Abstract

Improving the lateral resolution is a key focus of the research on optical measuring systems to expand the fields of application for optical metrology. By means of microspheres put on an object in a microscope, and therefore used as a near-field support, it has already been shown that a superresolution of structures below Abbe’s diffraction limit is possible. The following investigations give more detailed theoretical and experimental insight into the physical mechanisms responsible for the transition of near-field information to the far field. In particular, the effects of microspheres as near-field support on the behavior of phase-evaluating interference microscopes close to the optical resolution limit are studied experimentally as well as with numerical simulations. Special attention is drawn to measured data taken with a Linnik microscope of high numerical aperture. Finally, the measurement results of grating structures with a period below Abbe’s diffraction limit are presented.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microsphere-assisted phase-shifting profilometry

Stephane Perrin, Audrey Leong-Hoï, Sylvain Lecler, Pierre Pfeiffer, Ivan Kassamakov, Anton Nolvi, Edward Hæggström, and Paul Montgomery
Appl. Opt. 56(25) 7249-7255 (2017)

Unibody microscope objective tipped with a microsphere: design, fabrication, and application in subwavelength imaging

Bing Yan, Yang Song, Xibin Yang, Daxi Xiong, and Zengbo Wang
Appl. Opt. 59(8) 2641-2648 (2020)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214 (2004).
    [Crossref]
  2. Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
    [Crossref]
  3. J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
    [Crossref]
  4. X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
    [Crossref]
  5. A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
    [Crossref]
  6. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15, 17334–17342 (2007).
    [Crossref]
  7. Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988 (2013).
    [Crossref]
  8. A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
    [Crossref]
  9. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
    [Crossref]
  10. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.
  11. A. Darafsheh, “Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy,” Opt. Lett. 42, 735–738 (2017).
    [Crossref]
  12. L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
    [Crossref]
  13. S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
    [Crossref]
  14. Y. Cao, Y. Deng, Y. Xia, F. Wang, S. Yang, Y.-H. Ye, and J. Wang, “Influence of the photonic nanojet of microspheres on microsphere imaging,” Opt. Express 25, 27551 (2017).
    [Crossref]
  15. A. Heifertz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
    [Crossref]
  16. B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow (invited),” Opt. Mater. Express 7, 1820 (2017).
    [Crossref]
  17. H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
    [Crossref]
  18. C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
    [Crossref]
  19. C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
    [Crossref]
  20. S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
    [Crossref]
  21. M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
    [Crossref]
  22. T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
    [Crossref]
  23. J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
    [Crossref]
  24. C. B. Lin, Z.-H. Huang, and C.-Y. Liu, “Formation of high-quality photonic nanojets by decorating spider silk,” Opt. Lett. 44, 667–670 (2019).
    [Crossref]
  25. P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
    [Crossref]
  26. M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
    [Crossref]
  27. M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
    [Crossref]
  28. P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22, 12890–12899 (2014).
    [Crossref]
  29. F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
    [Crossref]
  30. P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
    [Crossref]
  31. P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
    [Crossref]
  32. P. Montgomery, S. Perrin, and S. Lecler, “Microsphere-assisted microscopy: from 2D to 3D super-resolution imaging,” in International Conference on Transparent Optical Networks, 4–7 July2018.
  33. I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
    [Crossref]
  34. P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
    [Crossref]
  35. A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
    [Crossref]
  36. P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, “Spectral composition of low-coherence interferograms at high numerical apertures,” J. Eur. Opt. Soc. 15, 5 (2019).
    [Crossref]
  37. B. Allendorf, E. Käkel, U.-M. Ha, S. Hagemeier, H. Hillmer, and P. Lehmann, “Adaptive high-resolution Linnik interferometry for 3D measurement of microparticles,” Opt. Lett. 44, 3550–3553 (2019).
    [Crossref]
  38. S. Tereschenko, “Digitale analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik,” Ph.D. thesis (Universität Kassel, 2018).
  39. P. Lehmann, W. Xie, B. Allendorf, and S. Tereschenko, “Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit,” Opt. Express 26, 7376 (2018).
    [Crossref]
  40. F. R. Tolmon and J. G. Wood, “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
    [Crossref]
  41. K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives,” Appl. Opt. 28, 3333–3338 (1989).
    [Crossref]
  42. C. J. R. Sheppard and K. G. Larkin, “Effect of numerical aperture on interference fringe spacing,” Appl. Opt. 34, 4731–4734 (1995).
    [Crossref]
  43. U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
    [Crossref]

2019 (5)

C. B. Lin, Z.-H. Huang, and C.-Y. Liu, “Formation of high-quality photonic nanojets by decorating spider silk,” Opt. Lett. 44, 667–670 (2019).
[Crossref]

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, “Spectral composition of low-coherence interferograms at high numerical apertures,” J. Eur. Opt. Soc. 15, 5 (2019).
[Crossref]

B. Allendorf, E. Käkel, U.-M. Ha, S. Hagemeier, H. Hillmer, and P. Lehmann, “Adaptive high-resolution Linnik interferometry for 3D measurement of microparticles,” Opt. Lett. 44, 3550–3553 (2019).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
[Crossref]

2018 (2)

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

P. Lehmann, W. Xie, B. Allendorf, and S. Tereschenko, “Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit,” Opt. Express 26, 7376 (2018).
[Crossref]

2017 (10)

T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
[Crossref]

P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Y. Cao, Y. Deng, Y. Xia, F. Wang, S. Yang, Y.-H. Ye, and J. Wang, “Influence of the photonic nanojet of microspheres on microsphere imaging,” Opt. Express 25, 27551 (2017).
[Crossref]

S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
[Crossref]

J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

A. Darafsheh, “Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy,” Opt. Lett. 42, 735–738 (2017).
[Crossref]

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow (invited),” Opt. Mater. Express 7, 1820 (2017).
[Crossref]

2016 (3)

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

2015 (3)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, and A. Cárabe, “Optical super-resolution imaging by high-index microspheres embedded in elastomers,” Opt. Lett. 40, 5–8 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

2014 (2)

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

P. K. Upputuri, Z. Wu, L. Gong, C. K. Ong, and H. Wang, “Super-resolution coherent anti-Stokes Raman scattering microscopy with photonic nanojets,” Opt. Express 22, 12890–12899 (2014).
[Crossref]

2013 (2)

Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38, 2988 (2013).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

2012 (1)

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

2011 (5)

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
[Crossref]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

2009 (1)

A. Heifertz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[Crossref]

2007 (2)

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere,” Opt. Express 15, 17334–17342 (2007).
[Crossref]

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

2004 (1)

1995 (1)

1989 (1)

1956 (1)

F. R. Tolmon and J. G. Wood, “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[Crossref]

Allen, K. W.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Allendorf, B.

Astratov, V. N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Backman, V.

Barbastathis, G.

Boucher, R.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Buhr, E.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Cao, Y.

Cárabe, A.

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214 (2004).
[Crossref]

Creath, K.

Dai, G.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Dal Negro, L.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Darafsheh, A.

De Angelis, F.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Deng, Y.

Diaspro, A.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Duan, Y.

Duocastella, M.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Dziomba, T.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Ehret, G.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Farahi, N.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Feng, C.

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Finlay, J. C.

Fries, T.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Gijs, M. A.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Gong, L.

Guardiola, C.

Guo, H.

T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
[Crossref]

Guo, W.

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Ha, U.-M.

Haddadpour, A.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Hæggström, E.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Hagemeier, S.

P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, “Spectral composition of low-coherence interferograms at high numerical apertures,” J. Eur. Opt. Soc. 15, 5 (2019).
[Crossref]

B. Allendorf, E. Käkel, U.-M. Ha, S. Hagemeier, H. Hillmer, and P. Lehmann, “Adaptive high-resolution Linnik interferometry for 3D measurement of microparticles,” Opt. Lett. 44, 3550–3553 (2019).
[Crossref]

Hairaye, C.

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

Hao, X.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Hawkins, N.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Heifertz, A.

A. Heifertz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[Crossref]

Heifetz, A.

Herzig, H. P.

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
[Crossref]

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

Hild, R.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Hillmer, H.

Hong, M.

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Hu, J.

T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
[Crossref]

Huang, Z.-H.

Huebner, U.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Hüser, L.

P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, “Spectral composition of low-coherence interferograms at high numerical apertures,” J. Eur. Opt. Soc. 15, 5 (2019).
[Crossref]

Huszka, G.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Jacassi, A.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Käkel, E.

Kassamakov, I.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Kim, M. S.

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

Kim, M.-S.

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
[Crossref]

Kong, S.-C.

Kuang, C.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Larkin, K. G.

Lecler, S.

P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
[Crossref]

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

P. Montgomery, S. Perrin, and S. Lecler, “Microsphere-assisted microscopy: from 2D to 3D super-resolution imaging,” in International Conference on Transparent Optical Networks, 4–7 July2018.

Lee, S.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Lehmann, P.

Leong-Hoi, A.

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
[Crossref]

P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
[Crossref]

Leong-Hoï, A.

P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

Li, D.

J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

Li, H.

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

Li, L.

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Li, W. J.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Li, Y.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Liberman, V.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

Limberopoulos, N. I.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Lin, C. B.

Ling, J.

J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

Liu, C.-Y.

Liu, L.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Liu, X.

J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Liu, Z.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Luk’Yanchuk, B.

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Luk’yanchuk, B. S.

Meyer, M.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Minin, I.

Minin, O.

Mirandé, W.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Monks, J. N.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Montgomery, P.

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
[Crossref]

P. Montgomery, S. Perrin, and S. Lecler, “Microsphere-assisted microscopy: from 2D to 3D super-resolution imaging,” in International Conference on Transparent Optical Networks, 4–7 July2018.

Montgomery, P. C.

P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
[Crossref]

S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

Morgenroth, W.

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Mühlig, S.

C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
[Crossref]

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

Nolvi, A.

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Ong, C. K.

Palovcak, A.

Paniagua-Domínguez, R.

Perrin, S.

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
[Crossref]

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

P. Montgomery, S. Perrin, and S. Lecler, “Microsphere-assisted microscopy: from 2D to 3D super-resolution imaging,” in International Conference on Transparent Optical Networks, 4–7 July2018.

Pfeiffer, P.

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
[Crossref]

Rockstuhl, C.

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
[Crossref]

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

Sahakian, A. V.

A. Heifertz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[Crossref]

Scharf, T.

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

C. Rockstuhl, M.-S. Kim, H. P. Herzig, T. Scharf, and S. Mühlig, “Engineering photonic nanojets,” Opt. Express 19, 10206 (2011).
[Crossref]

Sheppard, C. J. R.

Simpson, J. J.

Taflove, A.

Tantussi, F.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Tereschenko, S.

P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, “Spectral composition of low-coherence interferograms at high numerical apertures,” J. Eur. Opt. Soc. 15, 5 (2019).
[Crossref]

P. Lehmann, W. Xie, B. Allendorf, and S. Tereschenko, “Coherence scanning and phase imaging optical interference microscopy at the lateral resolution limit,” Opt. Express 26, 7376 (2018).
[Crossref]

S. Tereschenko, “Digitale analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik,” Ph.D. thesis (Universität Kassel, 2018).

Tolmon, F. R.

F. R. Tolmon and J. G. Wood, “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[Crossref]

Trouillon, R.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Upputuri, P. K.

Urbas, A. M.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Veronis, G.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Vollrath, F.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Walker, D. E.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Walsh, G. F.

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

Wang, F.

Y. Cao, Y. Deng, Y. Xia, F. Wang, S. Yang, Y.-H. Ye, and J. Wang, “Influence of the photonic nanojet of microspheres on microsphere imaging,” Opt. Express 25, 27551 (2017).
[Crossref]

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Wang, H.

Wang, J.

Wang, T.

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Wang, X.

J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

Wang, Y.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Wang, Z.

B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, and Z. Wang, “Refractive index less than two: photonic nanojets yesterday, today and tomorrow (invited),” Opt. Mater. Express 7, 1820 (2017).
[Crossref]

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Wood, J. G.

F. R. Tolmon and J. G. Wood, “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[Crossref]

Wu, Z.

Xia, T.

T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
[Crossref]

Xia, Y.

Xie, W.

Yan, B.

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Yan, Y.

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Yang, H.

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

Yang, S.

Ye, Y.-H.

Yu, H.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Yu, P.

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

Zaccaria, R. P.

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Zhang, B.

Zhang, H.

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

Zhuang, S.

T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
[Crossref]

ACS Nano (1)

M. Hong, L. Li, W. Guo, S. Lee, Y. Yan, and C. Feng, “Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum,” ACS Nano 8, 1809–1816 (2014).
[Crossref]

Ann. Phys. (1)

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis,” Ann. Phys. 527, 513–522 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

X. Hao, C. Kuang, X. Liu, H. Zhang, and Y. Li, “Microsphere based microscope with optical super-resolution capability,” Appl. Phys. Lett. 99, 203102 (2011).
[Crossref]

A. Darafsheh, G. F. Walsh, L. Dal Negro, and V. N. Astratov, “Optical super-resolution by high-index liquid-immersed microspheres,” Appl. Phys. Lett. 101, 141128 (2012).
[Crossref]

M. S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Gouy phase anomaly in photonic nanojets,” Appl. Phys. Lett. 98, 191114 (2011).
[Crossref]

J. Comput. Theor. Nanosci. (1)

A. Heifertz, S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
[Crossref]

J. Eur. Opt. Soc. (1)

P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, “Spectral composition of low-coherence interferograms at high numerical apertures,” J. Eur. Opt. Soc. 15, 5 (2019).
[Crossref]

J. Microsc. (1)

P. Montgomery, S. Lecler, S. Perrin, H. Li, and A. Leong-Hoi, “Illumination conditions in microsphere-assisted microscopy,” J. Microsc. 274, 69–75 (2019).
[Crossref]

J. Phys.: Conf. Series (1)

P. Montgomery, S. Lecler, A. Leong-Hoi, and P. Pfeiffer, “3D nano surface profilometry by combining the photonic nanojet with interferometry,” J. Phys.: Conf. Series 794, 012006 (2017).
[Crossref]

J. Sci. Instrum. (1)

F. R. Tolmon and J. G. Wood, “Fringe spacing in interference microscopes,” J. Sci. Instrum. 33, 236–238 (1956).
[Crossref]

Light Sci. Appl. (1)

L. Li, W. Guo, Y. Yan, S. Lee, and T. Wang, “Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy,” Light Sci. Appl. 2, e104 (2013).
[Crossref]

Meas. Sci. Technol. (1)

U. Huebner, W. Morgenroth, R. Boucher, M. Meyer, W. Mirandé, E. Buhr, G. Ehret, G. Dai, T. Dziomba, R. Hild, and T. Fries, “A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques,” Meas. Sci. Technol. 18, 422–429 (2007).
[Crossref]

Nano Lett. (2)

H. Yang, R. Trouillon, G. Huszka, and M. A. Gijs, “Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet,” Nano Lett. 16, 4862–4870 (2016).
[Crossref]

J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, and Z. Wang, “Spider silk: mother nature’s bio-superlens,” Nano Lett. 16, 5842–5845 (2016).
[Crossref]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’Yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, 216–218 (2011).
[Crossref]

Opt. Commun. (1)

S. Lee and L. Li, “Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy,” Opt. Commun. 334, 253–257 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

J. Ling, X. Wang, D. Li, and X. Liu, “Modelling and verification of white light oil immersion microsphere optical nanoscope,” Opt. Quantum Electron. 49, 377 (2017).
[Crossref]

Phys. Status Solidi A (2)

P. C. Montgomery, S. Lecler, A. Leong-Hoï, and S. Perrin, “High resolution surface metrology using microsphere-assisted interference microscopy,” Phys. Status Solidi A 216, 1800761 (2019).
[Crossref]

A. Leong-Hoi, C. Hairaye, S. Perrin, S. Lecler, P. Pfeiffer, and P. Montgomery, “High resolution microsphere-assisted interference microscopy for 3D characterization of nanomaterials,” Phys. Status Solidi A 215, 1700858 (2018).
[Crossref]

Proc. SPIE (3)

P. C. Montgomery, S. Lecler, A. Leong-Hoï, S. Perrin, and P. Pfeiffer, “Sub-diffraction surface topography measurement using a microsphere- assisted Linnik interferometer,” Proc. SPIE 10329, 1032918 (2017).
[Crossref]

C. Rockstuhl, H. P. Herzig, S. Mühlig, M.-S. Kim, and T. Scharf, “Photonic nanojet engineering: focal point shaping with scattering phenomena of dielectric microspheres,” Proc. SPIE 7941, 794115 (2011).
[Crossref]

S. Perrin, S. Lecler, A. Leong-Hoi, and P. C. Montgomery, “Role of coherence in microsphere-assisted nanoscopy,” Proc. SPIE 10330, 103300V (2017).
[Crossref]

Sci. Rep. (4)

F. Wang, L. Liu, P. Yu, Z. Liu, H. Yu, Y. Wang, and W. J. Li, “Three-dimensional super-resolution morphology by near-field assisted white-light interferometry,” Sci. Rep. 6, 24703 (2016).
[Crossref]

T. Xia, H. Guo, J. Hu, and S. Zhuang, “Parameter determination and transformation for the focusing of dielectric microspheres illuminated by optical needle,” Sci. Rep. 7, 5712 (2017).
[Crossref]

M. Duocastella, F. Tantussi, A. Haddadpour, R. P. Zaccaria, A. Jacassi, G. Veronis, A. Diaspro, and F. De Angelis, “Combination of scanning probe technology with photonic nanojets,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

I. Kassamakov, S. Lecler, A. Nolvi, A. Leong-Hoï, P. Montgomery, and E. Hæggström, “3D super-resolution optical profiling using microsphere enhanced MIRAU interferometry,” Sci. Rep. 7, 1–7 (2017).
[Crossref]

Other (3)

S. Tereschenko, “Digitale analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik,” Ph.D. thesis (Universität Kassel, 2018).

P. Montgomery, S. Perrin, and S. Lecler, “Microsphere-assisted microscopy: from 2D to 3D super-resolution imaging,” in International Conference on Transparent Optical Networks, 4–7 July2018.

K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, and V. N. Astratov, “Super-resolution imaging by arrays of high-index spheres embedded in transparent matrices,” in Proceedings of the IEEE National Aerospace and Electronics Conference (2015), pp. 50–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Experimental setup consisting of a Linnik interferometer, lighting and image acquisition units, and a piezo scanner; (b) enlarged section showing the microsphere on the specimen’s surface and the virtual image plane; and (c) photograph of the experimental setup.
Fig. 2.
Fig. 2. (a) Simulated and (b) measured spectra of interferograms for different numerical apertures. (Reprinted by permission from Springer Nature: [P. Lehmann, S. Tereschenko, B. Allendorf, S. Hagemeier, and L. Hüser, J. Eur. Opt. Soc. 15,5 (2019) [36]).
Fig. 3.
Fig. 3. Measured structure height (modulation depth) of the 300 nm grating is plotted with respect to the evaluation wavelength $ {\lambda _{{\rm eval}}} $ , both with and without a microsphere. The black dashed line shows the structure height of 85 nm measured with the AFM.
Fig. 4.
Fig. 4. Magnitude of time reversal field distributions for a grating (600 nm period): (a) without a microsphere and (b) with a microsphere. The position of the virtual image plane is marked with the white dashed line.
Fig. 5.
Fig. 5. Phase profile in the virtual image plane for (a) a grating structure (600 nm period) without microsphere; (b) phase profile assuming a microsphere (diameter 5 µm, $ {{\rm SiO}_2} $ ) on a plane surface; (c) phase profile assuming a microsphere on a grating structure; and (d) the grating structure in (c) was inverted.
Fig. 6.
Fig. 6. AFM results for 300 nm period length grating structure on the measurement object in (a) and (b); 230 nm period length grating structure in (c) and (d).
Fig. 7.
Fig. 7. Profile sections of the phase analysis of the 300 nm structure on the measurement object. (a) and (c) were with microsphere; and (b) and (d) measured without microsphere. The evaluation wavelength $ {\lambda _{\rm eval}} $ is 640 nm for (a) and (b) and 820 nm for (c) and (d).
Fig. 8.
Fig. 8. Measured topography of the grating structure with 300 nm period length. The evaluation wavelengths are (a) 640 nm and (b) 820 nm. The black dashed lines indicate the position of the profile cuts presented in Figs. 7(a) and 7(c).
Fig. 9.
Fig. 9. (a) Profile section and (b) surface topography of the 230 nm structure. The interferometric measurement data were obtained by means of phase evaluation. The evaluation wavelength was 650 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d min = k λ n sin α = k λ N A ,
λ λ e v a l = cos θ e .
λ 2 Λ = sin θ d i f f

Metrics