Abstract

In the method of surface reconstruction from polarization, the reconstructed area is generally non-rectangular and contains a large number of sampling points. There is a difficulty that the coefficient matrix in front of the height vector changes with the shape of the measured data when using the zonal estimation. The traditional iterative approaches consume more time for the reconstruction of this type of data. This paper presents a non-iterative zonal estimation to reduce the computing time and to accurately reconstruct the surface. The index vector is created according to the positions of both the valid and invalid elements in the difference and gradient matrices. It is used to obtain the coefficient matrix corresponding to the general data. The heights in the non-rectangular area are calculated non-iteratively by the least squares method. At the same time, the sparse matrix is applied for handling the large-scale data quickly. The simulation and the experiment are designed to verify the feasibility of the proposed method. The results show that the proposed method is highly efficient and accurate in the reconstruction of the non-rectangular data.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D reconstruction of specular surface by combined binocular vision and zonal wavefront reconstruction

Yuk-Ching Leung and Lilong Cai
Appl. Opt. 59(28) 8526-8539 (2020)

Algorithm based on the optimal block zonal strategy for fast wavefront reconstruction

Zhongye Ji, Xiaofang Zhang, Zhili Zheng, Yan Li, and Jun Chang
Appl. Opt. 59(5) 1383-1396 (2020)

Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry

Lei Huang, Junpeng Xue, Bo Gao, Chao Zuo, and Mourad Idir
Appl. Opt. 56(18) 5139-5144 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription