Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable broadband terahertz absorber based on plasmon hybridization in monolayer graphene ring arrays

Not Accessible

Your library or personal account may give you access

Abstract

Graphene as a new two-dimensional material can be utilized to design tunable optical devices owing to its exceptional physical properties, such as high mobility and tunable conductivity. In this paper, we present the design and analysis of a tunable broadband terahertz absorber based on periodic graphene ring arrays. Due to plasmon hybridization modes excited in the graphene ring, the proposed structure achieves a broad absorption bandwidth with more than 90% absorption in the frequency range of 0.88–2.10 THz under normal incidence, and its relative absorption bandwidth is about 81.88%. Meanwhile, it exhibits polarization-insensitive behavior and maintains high absorption over 80% when the incident angle is up to 45° for both TE and TM polarizations. Additionally, the peak absorption rate of the absorber can be tuned from 21% to nearly 100% by increasing the graphene’s chemical potential from 0 to 0.9 eV. Such a design can have some potential applications in various terahertz devices, such as modulators, detectors, and spatial filters.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

Binggang Xiao, Mingyue Gu, and Sanshui Xiao
Appl. Opt. 56(19) 5458-5462 (2017)

Tunable broadband terahertz absorber based on a single-layer graphene metasurface

Juzheng Han and Rushan Chen
Opt. Express 28(20) 30289-30298 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.