Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

3D resolution enhancement in saturated competition microscopy

Not Accessible

Your library or personal account may give you access

Abstract

To overcome the diffraction barrier, super-resolution microscopy is contrived and has witnessed scientific developments in varying fields, especially in last few decades, such as stochastic optical reconstruction microscopy, stimulated emission depletion microscopy (STED), mirror-enhanced super-resolution microscopy (MEANS), and fluorescence emission difference microscopy (FED). Recently, saturated competition microscopy (SAC) was developed to realize high sub-diffraction resolution in either fluorescent or non-fluorescent imaging. Compared with STED, SAC features non-constraint in fluorescent dye selection. Nevertheless, the lateral resolution is limited in consideration of photobleaching side effects. Also, the axial resolution enhancement of SAC has not been demonstrated. In this study, a method, combining FED, MEANS, and SAC, is presented to improve the three-dimensional (3D) resolution. The numerical study reveals that the lateral resolution is close to ${0.085}\lambda$ and axial resolution can be enhanced to ${0.184}\lambda$. In addition, the SNR is improved simultaneously. The availability to improve 3D resolution of SAC is believed to be significant for biological imaging in the future.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Isotropic superresolution imaging for fluorescence emission difference microscopy

Shangting You, Cuifang Kuang, Zihao Rong, Xu Liu, and Zhihua Ding
Appl. Opt. 53(33) 7838-7844 (2014)

Resolution enhancement of saturated fluorescence emission difference microscopy

Guangyuan Zhao, Cuifang Kuang, Zhihua Ding, and Xu Liu
Opt. Express 24(20) 23596-23609 (2016)

3D super-resolved in vitro multiphoton microscopy by saturation of excitation

Anh Dung Nguyen, François Duport, Arno Bouwens, Frédérique Vanholsbeeck, Dominique Egrise, Gaetan Van Simaeys, Philippe Emplit, Serge Goldman, and Simon-Pierre Gorza
Opt. Express 23(17) 22667-22675 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved