Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Feature extraction algorithm of precession target based on image length and Doppler broadening

Not Accessible

Your library or personal account may give you access

Abstract

In space defense, utilizing the micromotion features to distinguish real targets from interfering targets and decoys is effective. Due to the imaging of the high-speed precession target by microwave radar consisting of isolated scattering centers, there are many difficulties in using inverse synthetic aperture radar (ISAR) images for feature extraction. On the other hand, the inverse synthetic aperture ladar (ISAL) image is relatively continuous because of the short wavelength of laser, and the image sequence contains information about the variation in image length and Doppler width caused by target precession, which can be used for inverse motion parameters. By establishing an observation model of the precession target and performing image processing on the obtained ISAL image at different times, the image length sequence and Doppler width sequence can be obtained. Using the ellipse fitting method to process the obtained sequence, the precession parameters of the target can be obtained. The algorithm does not require prior information such as the radius and speed of the target motion, effectively improving the practicability of the algorithm. Finally, the effectiveness of the algorithm is verified by experimental results, and the error is controlled within 2%.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Feature extraction algorithm of a precession target based on a Doppler frequency profile of dual-aspect observation

Ning Wang, Di Mo, Ziqi Song, Ran Wang, and Yirong Wu
Appl. Opt. 58(17) 4695-4700 (2019)

Inverse synthetic aperture ladar imaging based on modified cubic phase function

Si Gao, Zenghui Zhang, Wenxian Yu, Manqing Wu, and Guangzuo Li
Appl. Opt. 60(7) 2014-2021 (2021)

Moving target imaging of a dual-channel ISAL with binary phase shift keying signals and large squint angles

Anjing Cui, Daojng Li, Jiang Wu, Kai Zhou, Jinghan Gao, Ming Qiao, Shumei Wu, Yefei Wang, and Yuan Yao
Appl. Opt. 61(18) 5466-5473 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.