Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-beam rotational coherent anti-Stokes Raman spectroscopy thermometry in scattering environments

Abstract

Three-beam rotational coherent anti-Stokes Raman scattering (CARS) measurements performed in highly scattering environments are susceptible to contamination by two-beam CARS signals generated by the pump–probe and Stokes–probe interactions at the measurement volume. If this occurs, differences in the Raman excitation bandwidth between the two-beam and three-beam CARS signals can add significant errors to the spectral analysis. This interference to the best of our knowledge has not been acknowledged in previous three-beam rotational CARS experiments, but may introduce measurement errors up to 25% depending on the temperature, amount of scattering, and differences between the two-beam and three-beam Raman excitation bandwidths. In this work, the presence of two-beam CARS signal contamination was experimentally verified using a femtosecond–picosecond rotational CARS instrument in two scattering environments: (1) a fireball generated by a laboratory-scale explosion that contained particulate matter, metal fragments, and soot, and (2) a flow of air and small liquid droplets. A polarization scheme is presented to overcome this interference. By rotating the pump and Stokes polarizations ${+}{55}^\circ$ and ${-}{55}^\circ$ from the probe, respectively, the two-beam and three-beam CARS signals are orthogonally polarized and can be separated using a polarization analyzer. Using this polarization arrangement, the Raman-resonant three-beam CARS signal amplitude is reduced by a factor of 2.3 compared to the case where all polarizations are parallel. This method is successfully demonstrated in both scattering environments. A theoretical model is presented, and the temperature measurement error is studied for different experimental conditions. The criteria for when this interference may be present are discussed.

Full Article  |  PDF Article
More Like This
Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry

Daniel R. Richardson, Hans U. Stauffer, Sukesh Roy, and James R. Gord
Appl. Opt. 56(11) E37-E49 (2017)

Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry

Chao-Bo Yang, Ping He, David Escofet-Martin, Jiang-Bo Peng, Rong-Wei Fan, Xin Yu, and Derek Dunn-Rankin
Appl. Opt. 57(2) 197-207 (2018)

Gas-phase thermometry using delayed-probe-pulse picosecond coherent anti-Stokes Raman scattering spectra of H2

Hans U. Stauffer, Waruna D. Kulatilaka, Paul S. Hsu, James R. Gord, and Sukesh Roy
Appl. Opt. 50(4) A38-A48 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.