Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deformable mirror resolution-matching-based two-stage wavefront sensorless adaptive optics method

Not Accessible

Your library or personal account may give you access

Abstract

In high-power laser facilities, the application of a traditional wavefront control method is limited under the influence of a continuous phase plate (CPP). In order to obtain a satisfactory far-field intensity distribution at the target of the beamline with the CPP, a novel deformable mirror (DM) resolution-matching-based two-stage wavefront sensorless adaptive optics method is proposed and demonstrated. The principles of the DM resolution-matching method and two-stage wavefront sensorless adaptive optics method are introduced, respectively. Based on the numerical model, the matching relationship between the actuator space of the DM and the spatial period of the CPP is investigated. By using the resolution-matched DM, the feasibility of the two-stage wavefront sensorless adaptive optics method is numerically and experimentally verified. Both the numerical and the experimental results show that the presented DM resolution-matching-based two-stage wavefront sensorless adaptive optics method could achieve the target focal spot control under the influence of the CPP, and the profile and the intensity uniformity of the corrected focal spot are optimized close to the designed ideal focal spot.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast correction approach for wavefront sensorless adaptive optics based on a linear phase diversity technique

Dan Yue, Haitao Nie, Ye Li, and Changsheng Ying
Appl. Opt. 57(7) 1650-1656 (2018)

Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

Chia-Yuan Chang, Li-Chung Cheng, Hung-Wei Su, Yvonne Yuling Hu, Keng-Chi Cho, Wei-Chung Yen, Chris Xu, Chen Yuan Dong, and Shean-Jen Chen
Biomed. Opt. Express 5(6) 1768-1777 (2014)

Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep learning

Yushuang Li, Dan Yue, and Yihao He
Appl. Opt. 61(14) 4168-4176 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.