Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fluorescence imaging of cells using long-range electromagnetic surface waves for excitation

Not Accessible

Your library or personal account may give you access

Abstract

We present a depth-localized illumination technique for wide-field fluorescence microscopy, based on long-range optical surface waves. This technique allows one to excite the fluorescence only in a thin near-substrate layer of the specimen. Our experimental setup is compatible with both upright and inverted microscopes. It provides fluorescent microscopic images, which are superior to the epifluorescence ones in signal-to-noise ratio, contrast, and detail. We demonstrate the applicability of our technique for imaging both bacterial and eukaryotic cells (E. coli and HeLa, respectively).

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly confined surface imaging by solid immersion total internal reflection fluorescence microscopy

Lin Wang, Cvetelin Vasilev, Daniel P. Canniffe, Luke R. Wilson, C. Neil Hunter, and Ashley J. Cadby
Opt. Express 20(3) 3311-3324 (2012)

Evanescent field excitation of fluorescence by epi-illumination microscopy

Andrea L. Stout and Daniel Axelrod
Appl. Opt. 28(24) 5237-5242 (1989)

Around-the-objective total internal reflection fluorescence microscopy

Thomas P. Burghardt, Andrew D. Hipp, and Katalin Ajtai
Appl. Opt. 48(32) 6120-6131 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.