Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of channel correlation and channel capacity for indoor MIMO visible light communication systems

Not Accessible

Your library or personal account may give you access

Abstract

In indoor multi-input–multi-output (MIMO) visible light communication (VLC) systems, spatial multiplexing (SMP) is employed to improve spectral efficiency. However, the performance of SMP in an indoor VLC system depends on a low channel correlation. In this paper, a receiver model with angular diversity detectors is considered. The objective is to reduce the channel correlation and hence the system performance in terms of bit error rate (BER) and channel capacity compared to vertically oriented detectors under no-line-of-sight (NLOS) channel conditions. For a vertical detector setup, the results show that the channel correlation cannot be further reduced by varying the transmitter separation, transmitter semi-angle, or field of view of the receiver in NLOS conditions due to the design of receiver separation being very small in small mobile devices. In comparison to vertical detector setups, by varying the detector axis of each photodetector (PD) detector axis in angular diversity detector setups, the channel matrix rank is improved under LOS conditions, and the channel correlation is effectively reduced under NLOS conditions without requiring any implementation complexity at the receiver. Therefore, it is found that the angular diversity detector setup can substantially improve the BER performance of SMP, since it makes each PD more spatially separated to improve channel conditions. Notably, we deduce the channel capacity expression to approximate the capacity of the indoor highly correlated MIMO channel and verify the theoretical analysis by numerical simulations. The results show that the angular diversity detector setup provides capacity improvement when compared with the vertical detector setup. Even though it diminishes the received power when the elevation angle exceeds the optimal elevation angle, it outweighs this degradation by providing reduced channel correlation.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Orientation-induced link-blocked receiver for MIMO visible light communication

Manh Le Tran and Sunghwan Kim
Opt. Express 28(8) 12157-12173 (2020)

Performance-enhanced indoor MIMO-OFDM visible light communications using individual/joint CAZAC precoding techniques

Mengru Chen, Huimin Lu, Danyang Chen, Jianli Jin, Ming Chen, and Jianping Wang
Appl. Opt. 59(34) 10746-10753 (2020)

Spatially correlated MIMO for exploiting the capacity of NLOS ultraviolet turbulent channels

Feiyu Li, Yong Zuo, Ang Li, Zhihua Du, and Jian Wu
Opt. Express 27(21) 30639-30652 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved