Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface plasma influence on nanosecond laser ablation

Not Accessible

Your library or personal account may give you access

Abstract

The comparison of laser ablation and plasma evolution has been carried out for a molten steel sample in the absence and in the presence of surface plasma. A continuous wave (cw) laser beam was utilized for local melting of a steel (Fe>99wt.%) sample, but it also induced a surface plasma according to optical emission spectroscopy. The cw laser was switched off for a few milliseconds to dissipate the surface plasma, but the surface temperature did not change according to optical pyrometer measurements. Molten metal was ablated by a nanosecond Nd:YAG laser pulse during cw laser operation and when it was switched off for 5 milliseconds. Comparison of laser ablation and plasma evolution in the presence and in the absence of the near-surface plasma induced by the cw laser beam has been carried out. Time-integrated plasma imaging detected slightly greater emissivity of the plasma induced during cw laser operation. The cw laser operation resulted in a twofold enhancement of the intensity of atomic lines in the spectra as well as slower decay of plasma emission. Plume temperature and electron density were slightly greater at early stages of plume expansion in surface plasma.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Plasma emission characteristics in laser-induced breakdown spectroscopy of silicon with mid-infrared, multi-millijoule, nanosecond laser pulses from a Ho:YLF excitation source

Rotem Kupfer, Hernan J. Quevedo, Herbie L. Smith, Thanh N. Ha, Andrew Yandow, Ganesh Tiwari, C. Grant Richmond, Li Fang, and B. Manuel Hegelich
Appl. Opt. 58(17) 4592-4598 (2019)

Imaging and emission spectroscopy of the submicrosecond plasma generated from copper substrate with nanosecond laser pulses

Mateusz Tanski, Robert Barbucha, Jerzy Mizeraczyk, and Szymon Tofil
Appl. Opt. 59(27) 8388-8394 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.