Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses

Not Accessible

Your library or personal account may give you access

Abstract

We disclose a method of fabricating a low-voltage-driven smart glass based on micro-patterned liquid crystal (LC) Fresnel lenses and implement three proof-of-concept prototypes. Distinct from the conventional LC-based smart windows with the scattering state, the prominence of our proposed LC smart glass in blurry state under both normal and oblique observations stems from the image distortion caused by LC Fresnel lenses. In addition, the high transmittance (>90%) in clear state is obtained by applying a low voltage of 2 V to each prototype. Moreover, by elaborating the design of the LC smart glass, the reversed switching states [i.e., a clear (voltage OFF) state and a blurry (voltage ON) state] and fast switching time can be simultaneously achieved.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Refractive Fresnel liquid crystal lenses driven by two voltages

Wenbin Feng and Mao Ye
Opt. Express 32(1) 662-676 (2024)

Novel easy to fabricate liquid crystal composite with potential for electrically or thermally controlled transparency windows

Ibrahim Abdulhalim, P. Lakshmi Madhuri, Mahmud Diab, and Taleb Mokari
Opt. Express 27(12) 17387-17401 (2019)

Sensitive voltage-dependent diffraction of a liquid crystal Fresnel lens

Wen-Chi Hung, Yu-Jen Chen, Chia-Huey Lin, I-Min Jiang, and Tzu-Fang Hsu
Appl. Opt. 48(11) 2094-2098 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.