Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sensitivity enhancement of an SPR biosensor with a graphene and blue phosphorene/transition metal dichalcogenides hybrid nanostructure

Not Accessible

Your library or personal account may give you access

Abstract

A novel surface plasmon resonance (SPR) biosensor based on Ag-Au bimetallic films with a hybrid structure of blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs) and graphene is presented. In order to improve the sensitivity, the thickness of silver and gold films is optimized to achieve minimum reflectivity and an adequate level of sensitivity; further, sensitivity for the monolayer ${\rm BlueP}/{{\rm MoS}_2}$ and graphene structure is enhanced by 19.73%, with respect to a traditional sensor. Besides, the effect of layers of different Blue/TMDCs heterostructures to the sensitivity of the SPR biosensor is investigated, and the highest sensitivity with 335.4°/RIU for the bilayer ${\rm BlueP}/{{\rm WS}_2}$ is obtained. Furthermore, distributions of the electric field and the changes of resonance angle to the refractive index of the sensing medium and prism in the visible regime are illustrated at optimal configuration. In virtue of highly sensitive characteristics, the proposed sensor structure will be a much better option to be employed for further biological detection.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Comparison of the sensitivity by SPR in a metal-ITO-BlueP/TMDC structure

Jianfei Liao, Lei Han, and Chaoyu Xu
Appl. Opt. 60(17) 5161-5168 (2021)

Theoretical investigation of an enhanced Goos–Hänchen shift sensor based on a BlueP/TMDC/graphene hybrid

Qizheng Ji, Bin Yan, Lei Han, Jin Wang, Ming Yang, and Chuan Wu
Appl. Opt. 59(27) 8355-8361 (2020)

Numerical and analytical analysis of an ultrahigh sensitive surface plasmon resonance sensor based on a black phosphorene/graphene heterostructure

Abolfazl Nourizad, Saeed Golmohammadi, Mohammad Reza Tohidkia, and Ayuob Aghanejad
Appl. Opt. 62(25) 6542-6552 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved