Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dual-beam cross-correlation spectrometer for radial velocity measurements

Abstract

Measuring the radial velocity of an object can be achieved by quantifying the Doppler shift of Fraunhofer lines. Measurements are typically made using high-resolution conventional spectroscopy, in which the Doppler shift is calculated numerically on a computer. An alternative technique includes cross-correlation spectroscopy, which performs an optical correlation of the incident spectrum against a reference spectrum embedded in the instrument. Many existing correlation spectrometers leverage a chrome mask and obtain a single beam measurement, making the sensors more sensitive to atmospheric turbulence without moving parts. In this paper, we present a static dual-beam polarization-based technique for acquiring cross-correlation spectra that is insensitive to atmospheric turbulence and contains no moving parts. The instrument is based on acquiring light both inside and outside of the solar Fraunhofer lines using a twisted nematic liquid-crystal spatial light modulator. Correlation spectra can be calculated as a ratio of these two components. A model of the dual-beam cross-correlation spectrometer is presented and subsequently validated with experimental observations of Venus. Radial velocity accuracies, as calculated against reference ephemerides, yielded an absolute error less than 0.24%.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Fiber Fabry–Perot astrophotonic correlation spectroscopy for remote gas identification and radial velocity measurements

Ross Cheriton, Adam Densmore, Suresh Sivanandam, Ernst de Mooij, Pavel Cheben, Dan-Xia Xu, Jens H. Schmid, and Siegfried Janz
Appl. Opt. 60(32) 10252-10263 (2021)

Determination of velocity gradients with scattered light cross-correlation measurements

C. Keveloh and W. Staude
Appl. Opt. 22(2) 333-338 (1983)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.