Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

One-dimensional defective photonic crystals for the sensing and detection of protein

Not Accessible

Your library or personal account may give you access

Abstract

The sensing of protein is of great importance because of its prominent role in building and repairing tissues. In this work, we present a simple design for the detection and sensing of protein using one-dimensional defective photonic crystals. The main idea of our work is included in the theoretical investigation of the transmittance properties of the resonant mode produced inside the photonic band gap. Our study uses the characteristic matrix method and curve fitting. The main reason for our study is to detect the concentration of a protein solution using an efficient, accurate, and simple method. Here, the defect layer is filled with a protein solution. Our idea depends on two hypotheses, and the first one is based on the appearance of a resonant peak on the photonic band gap. The second one depends on a change in the position of this resonant peak with the concentration of the protein solution. The effect of many parameters on the performance of our sensor, such as the thickness of the defect layer and the sensitivity, is demonstrated. The numerical results could present a simple way to design an accurate, stable, efficient, and low-cost protein sensor compared to other current methods and techniques.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Detection and sensing of hemoglobin using one-dimensional binary photonic crystals comprising a defect layer

Mazen M. Abadla and Hussein A. Elsayed
Appl. Opt. 59(2) 418-424 (2020)

Defect mode tunability based on the electro-optical characteristics of the one-dimensional graphene photonic crystals

Arafa H. Aly, Fatma A. Sayed, and Hussein A. Elsayed
Appl. Opt. 59(16) 4796-4805 (2020)

High-sensitivity quasi-periodic photonic crystal biosensor based on multiple defective modes

Xiaoqing Wang, Lin Zhou, Tingting Zhao, Xing Liu, Shuai Feng, Xiao Chen, Honglian Guo, Chuanbo Li, and Yiquan Wang
Appl. Opt. 58(11) 2860-2866 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved