Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Stable L-band multiwavelength erbium-doped fiber laser based on four-wave mixing using nickel nanofluid

Not Accessible

Your library or personal account may give you access

Abstract

A simple continuous-wave multiwavelength erbium-doped fiber laser based on four-wave mixing has been successfully demonstrated utilizing nickel nanofluid (Ni-NF) for the first time, to the best of our knowledge. By fine adjustment of the laser diode pump power up to 196 mW and without any intracavity filtering, stable dual-, triple-, and quadruple-lasing lines in the L-band have been observed at 1595.6 nm, 1596.8 nm, 1598 nm, and 1599.2 nm, respectively, with a signal-to-noise ratio 43dB. The induced L-band wavelengths showed high stability with wavelength shifts <0.07nm and power fluctuation of <3dB by monitoring the output spectra for a duration of 30 min at room temperature. Taking into account the superiority of Ni-NF in terms of compactness, low cost, and easy fabrication, this design can be practically used in a variety of nonlinear photonic applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber

Young-Geun Han, Thi Van Anh Tran, and Sang Bae Lee
Opt. Lett. 31(6) 697-699 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.