Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy

Not Accessible

Your library or personal account may give you access

Abstract

Digital holographic microscopy (DHM) is a well-known powerful technique allowing measurement of the spatial distributions of both the amplitude and phase produced by a transparent sample. Nevertheless, in order to improve the transverse resolution of the DHM system, a microscope objective has to be introduced in the object beam path, which inevitably leads to phase aberration in the object wavefront. In recent decades, a multitude of techniques have been proposed to compensate for this phase aberration, and the principal component analysis (PCA) technique has proven to be one of the most promising approaches due to its high compensation accuracy, low computational complexity, and simplicity to implement. However, when it comes to high-order phase aberration, which is common for a mal-aligned DHM system, the PCA technique usually performs poorly since it is unable to fit the cross-terms of the standard Zernike polynomials. To address this problem, here we propose a multi-step phase-aberration-compensation method based on optimal PCA and sub-sampling where PCA is first applied to remove the non-cross-aberration terms, followed by sub-sampled fitting for the remaining cross-aberration correction. The key advantage of our approach is that it can handle both the conventional objective phase curvature and high-order aberrations such as astigmatism and anamorphism with very little computational overhead. Simulation and experimental results demonstrate that our method outperforms state-of-the-art approaches, and the compensation results are consistent with those obtained from the double-exposure method.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Phase curvature compensation in digital holographic microscopy based on phase gradient fitting and optimization

Hongqiang Yu, Shuhai Jia, Jun Dong, Di Huang, and Shunjian Xu
J. Opt. Soc. Am. A 36(12) D1-D6 (2019)

Phase aberration compensation in digital holographic microscopy based on principal component analysis

Chao Zuo, Qian Chen, Weijuan Qu, and Anand Asundi
Opt. Lett. 38(10) 1724-1726 (2013)

Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection

Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah
Opt. Express 25(13) 15043-15057 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.