Abstract

The independent excitation and tuning of a dual-band graphene plasmonic wave are realized in a hybrid structure that consists of two graphene monolayers placed above and below the trapezoidal grating. Because of the transparency of graphene in the mid-infrared range, the incident light can travel through the first graphene layer to be diffracted by the grating structure and couple its energy to both graphene layers. Numerical simulations are performed using the finite difference time domain method. Results show that the plasmon resonances corresponding to the two graphene monolayers are excited at 9.8 and 10.9 μm, which agrees well with the theoretical analysis. Because of the fast and efficient electrical tunability of graphene, the resonance wavelengths can be tuned individually by changing the chemical potential of the corresponding graphene. Furthermore, the effects of geometric parameters and the refractive index of the surrounding media are studied. The results show that the structure can achieve an optimal sensing coefficient at 0.4 and 0.5 eV for the top and bottom graphene plasmon resonances, respectively. The proposed structure provides an alternative option to engineer the proposed structure for sensing with high detection accuracy at mid-infrared wavelengths.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Independent tuning of double plasmonic waves in a free-standing graphene-spacer-grating-spacer-graphene hybrid slab

Ying Chen, Jin Yao, Zhengyong Song, Longfang Ye, Guoxiong Cai, and Qing Huo Liu
Opt. Express 24(15) 16961-16972 (2016)

Dual tunable plasmon-induced transparency based on silicon–air grating coupled graphene structure in terahertz metamaterial

Hui Xu, Hongjian Li, Zhihui He, Zhiquan Chen, Mingfei Zheng, and Mingzhuo Zhao
Opt. Express 25(17) 20780-20790 (2017)

Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies

Jigang Hu, Xiaohang Wu, Hongju Li, Enxu Yao, Weiqiang Xie, Wei Liu, Yonghua Lu, and Changjun Ming
J. Opt. Soc. Am. B 36(3) 697-704 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription