Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High temperature resistant ultra-short DBR Yb-doped fiber laser

Not Accessible

Your library or personal account may give you access

Abstract

We present a distributed Bragg reflector (DBR) Yb-doped fiber laser based on a pair of type IA fiber Bragg gratings (FBGs). The high temperature resistant gratings are fabricated in high absorption hydrogen loaded Yb-doped silica fiber by use of a 244 nm argon laser and phase mask method. The DBR laser, with only 10 mm cavity length, exhibits high signal-noise ratio (SNR) of over 50 dB and can survive at 450°C in a long term with stable output power and central wavelength. Besides, the laser has a relatively low temperature sensitivity of 8.9 pm/°C, which contributes to cross-sensitization of stress and temperature.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra-short DBR fiber laser with high-temperature resistance using tilted fiber Bragg grating output coupler

Xuantung Pham, Jinhai Si, Tao Chen, Zhen Niu, Fengqin Huang, and Xun Hou
Opt. Express 27(26) 38532-38540 (2019)

Ultra-high-temperature resistant distributed Bragg reflector fiber laser based on type II-IR fiber Bragg gratings

Xuantung Pham, Jinhai Si, Tao Chen, Zhen Niu, and Xun Hou
Appl. Opt. 59(10) 3081-3085 (2020)

High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber

Bai-Ou Guan, Yang Zhang, Hong-Jun Wang, Da Chen, and Hwa-Yaw Tam
Opt. Express 16(5) 2958-2964 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.