Abstract

A near-infrared (NIR) spectral sensor consisting of a 25-channel dielectric multi-patterned filter array (MFA) and CCD is proposed and fabricated. The MFA consists of a wavy dielectric multilayer with a gradient layer profile on a silica substrate with surface grating. The incoming NIR spectrum is predicted by Wiener estimation utilizing the MFA’s spectral responses and a set of training spectral data. Estimation performance is evaluated under various optical shot-noise conditions.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the estimation of target spectrum for filter-array based spectrometers

Cheng-Chun Chang and Heung-No Lee
Opt. Express 16(2) 1056-1061 (2008)

Snapshot multispectral polarization imaging using a photonic crystal filter array

Kazuma Shinoda, Yasuo Ohtera, and Madoka Hasegawa
Opt. Express 26(12) 15948-15961 (2018)

Tunable multiple-passband microwave photonic filter based on external optical injected Fabry-Pérot laser

Wenxuan Wang, Long Huang, Ji Tao, Huatao Zhu, Xinwei Du, Lijun Hao, Changyuan Yu, and Xiangfei Chen
Opt. Express 27(9) 12491-12503 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. B. Osborne, T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy (Pearson Education, 1993).
  2. F. Sigernes, M. Syrjasuo, R. Storvold, J. Fortuna, M. E. Grotte, and T. Johansen, “Do it yourself hyperspectral imager for handheld to airborne operations,” Opt. Express 26, 6021–6035 (2018).
    [Crossref]
  3. C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
    [Crossref]
  4. S. Gunasekaran, M. R. Paulsen, and G. C. Shove, “Optical methods for nondestructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
    [Crossref]
  5. B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
    [Crossref]
  6. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
    [Crossref]
  7. A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.
  8. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
    [Crossref]
  9. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
    [Crossref]
  10. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  11. J. Oliver, W.-B. Lee, and H.-N. Lee, “Filters with random transmittance for improving resolution in filter-array-based spectrometers,” Opt. Express 21, 3969–3989 (2013).
    [Crossref]
  12. S. Kawakami, “Fabrication of submicrometre 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
    [Crossref]
  13. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25, 499–503 (2007).
    [Crossref]
  14. Y. Ohtera and H. Yamada, “Multichannel bandpass filters utilizing multilayer photonic crystal,” Opt. Lett. 38, 1235–1237 (2013).
    [Crossref]
  15. K. Shinoda, Y. Ohtera, and M. Hasegawa, “Snapshot multispectral polarization imaging using a photonic crystal filter array,” Opt. Express 26, 15948–15961 (2018).
    [Crossref]
  16. Y. Ohtera, D. Kurniatan, and H. Yamada, “Design and fabrication of multichannel Si/SiO2 autocloned photonic crystal edge filters,” Appl. Opt. 50, C50–C54 (2011).
    [Crossref]
  17. Tohoku University Micro System Integration Center, http://www.mu-sic.tohoku.ac.jp/index_e.html .
  18. T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).
  19. Photonic Lattice, Inc., https://www.photonic-lattice.com/en/ .
  20. S. Kawano, H. Watanabe, and M. Iwamoto, “Determination of sugar content in intact peaches by near infrared spectroscopy with fiber optics in interactance mode,” J. Japanese Soc. Hortic. Sci. 61, 445–451 (1992).
    [Crossref]
  21. R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93, 161–171 (2006).
    [Crossref]
  22. V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
    [Crossref]
  23. G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).
  24. W. K. Pratt and C. E. Mancill, “Spectral estimation techniques for the spectral calibration of a color image scanner,” Appl. Opt. 15, 73–75 (1976).
    [Crossref]
  25. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39, 6621–6632 (2000).
    [Crossref]
  26. U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
    [Crossref]
  27. H.-L. Shen, P.-Q. Cai, S.-J. Shao, and J. H. Xin, “Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation,” Opt. Express 15, 15545–15554 (2007).
    [Crossref]

2018 (2)

2016 (1)

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

2015 (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

2013 (4)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref]

J. Oliver, W.-B. Lee, and H.-N. Lee, “Filters with random transmittance for improving resolution in filter-array-based spectrometers,” Opt. Express 21, 3969–3989 (2013).
[Crossref]

Y. Ohtera and H. Yamada, “Multichannel bandpass filters utilizing multilayer photonic crystal,” Opt. Lett. 38, 1235–1237 (2013).
[Crossref]

2011 (3)

Y. Ohtera, D. Kurniatan, and H. Yamada, “Design and fabrication of multichannel Si/SiO2 autocloned photonic crystal edge filters,” Appl. Opt. 50, C50–C54 (2011).
[Crossref]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

2008 (1)

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

2007 (3)

2006 (1)

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93, 161–171 (2006).
[Crossref]

2004 (1)

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

2000 (1)

1997 (1)

S. Kawakami, “Fabrication of submicrometre 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[Crossref]

1992 (1)

S. Kawano, H. Watanabe, and M. Iwamoto, “Determination of sugar content in intact peaches by near infrared spectroscopy with fiber optics in interactance mode,” J. Japanese Soc. Hortic. Sci. 61, 445–451 (1992).
[Crossref]

1985 (1)

S. Gunasekaran, M. R. Paulsen, and G. C. Shove, “Optical methods for nondestructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[Crossref]

1984 (1)

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

1976 (1)

Aoyama, T.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Baba, A.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Beullens, K.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Birth, G. S.

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

Bobelyn, E.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Cai, P.-Q.

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Carson, J. J. L.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref]

Casadoro, G.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Cavaletto, C. G.

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

Chan, H. T.

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

Chang, C.-C.

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Cheng, G.

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Choi, B. I.

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Costa, G.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Dull, G. G.

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

Edwards, P.

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Fearn, T.

B. B. Osborne, T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy (Pearson Education, 1993).

Fiori, G.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Fortuna, J.

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Geelen, B.

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

Gonzalez, P.

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

Grotte, M. E.

Gunasekaran, S.

S. Gunasekaran, M. R. Paulsen, and G. C. Shove, “Optical methods for nondestructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[Crossref]

Haneishi, H.

Hasegawa, M.

Hasegawa, T.

Hashimoto, N.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Hindle, P. H.

B. B. Osborne, T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy (Pearson Education, 1993).

Hosoi, A.

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Inoue, Y.

Ishikawa, W.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Iwamoto, M.

S. Kawano, H. Watanabe, and M. Iwamoto, “Determination of sugar content in intact peaches by near infrared spectroscopy with fiber optics in interactance mode,” J. Japanese Soc. Hortic. Sci. 61, 445–451 (1992).
[Crossref]

Jayapala, M.

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

Johansen, T.

Kaminska, B.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref]

Kawakami, S.

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25, 499–503 (2007).
[Crossref]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

S. Kawakami, “Fabrication of submicrometre 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[Crossref]

Kawano, S.

S. Kawano, H. Watanabe, and M. Iwamoto, “Determination of sugar content in intact peaches by near infrared spectroscopy with fiber optics in interactance mode,” J. Japanese Soc. Hortic. Sci. 61, 445–451 (1992).
[Crossref]

Kawashima, T.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Kurniatan, D.

Kurokawa, U.

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

Lambrechts, A.

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

Lammertyn, J.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Lee, H.-N.

Lee, W.-B.

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Liu, Z.

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Lu, R.

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93, 161–171 (2006).
[Crossref]

Magee, J. B.

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

Mancill, C. E.

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Miura, K.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Miyake, Y.

Najiminaini, M.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref]

Nicolai, B. M.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Noferini, M.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Ohkubo, H.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Ohtera, Y.

Oliver, J.

Onuki, T.

Osborne, B. B.

B. B. Osborne, T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy (Pearson Education, 1993).

Paulsen, M. R.

S. Gunasekaran, M. R. Paulsen, and G. C. Shove, “Optical methods for nondestructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[Crossref]

Peirs, A.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Peng, Y.

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93, 161–171 (2006).
[Crossref]

Pratt, W. K.

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Saeys, W.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Sasaki, Y.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Sato, T.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

Shao, S.-J.

Shen, H.-L.

Shinoda, K.

Shove, G. C.

S. Gunasekaran, M. R. Paulsen, and G. C. Shove, “Optical methods for nondestructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[Crossref]

Sigernes, F.

Soussan, P.

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

Storvold, R.

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Syrjasuo, M.

Tack, K.

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

Tadiello, A.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Theron, K. I.

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

Trainotti, L.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Tsumura, N.

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Vasefi, F.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref]

Watanabe, H.

S. Kawano, H. Watanabe, and M. Iwamoto, “Determination of sugar content in intact peaches by near infrared spectroscopy with fiber optics in interactance mode,” J. Japanese Soc. Hortic. Sci. 61, 445–451 (1992).
[Crossref]

Xin, J. H.

Yamada, H.

Yokoyama, Y.

Zhang, C.

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Zheng, S.

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Zhou, M.-D.

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Ziosi, V.

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98, 093113 (2011).
[Crossref]

Biosystems Eng. (1)

R. Lu and Y. Peng, “Hyperspectral scattering for assessing peach fruit firmness,” Biosystems Eng. 93, 161–171 (2006).
[Crossref]

Electron. Lett. (1)

S. Kawakami, “Fabrication of submicrometre 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[Crossref]

IEEE Sens. J. (1)

U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J. 11, 1556–1563 (2011).
[Crossref]

IEICE Trans. Electron. (1)

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, “Development of autocloned photonic crystal devices,” IEICE Trans. Electron. E87-C, 283–290 (2004).

J. Agric. Eng. Res. (1)

S. Gunasekaran, M. R. Paulsen, and G. C. Shove, “Optical methods for nondestructive quality evaluation of agricultural and biological materials,” J. Agric. Eng. Res. 32, 209–241 (1985).
[Crossref]

J. Am. Soc. Hortic. Sci. (1)

G. S. Birth, G. G. Dull, J. B. Magee, H. T. Chan, and C. G. Cavaletto, “An optical method for estimating papaya maturity,” J. Am. Soc. Hortic. Sci. 109, 62–66 (1984).

J. Japanese Soc. Hortic. Sci. (1)

S. Kawano, H. Watanabe, and M. Iwamoto, “Determination of sugar content in intact peaches by near infrared spectroscopy with fiber optics in interactance mode,” J. Japanese Soc. Hortic. Sci. 61, 445–451 (1992).
[Crossref]

J. Lightwave Technol. (1)

Lab Chip (1)

C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip 16, 246–250(2016).
[Crossref]

Nat. Photonics (1)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Postharvest Biol. Technol. (2)

B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review,” Postharvest Biol. Technol. 46, 99–118 (2007).
[Crossref]

V. Ziosi, M. Noferini, G. Fiori, A. Tadiello, L. Trainotti, G. Casadoro, and G. Costa, “A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit,” Postharvest Biol. Technol. 49, 319–329 (2008).
[Crossref]

Sci. Rep. (1)

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3, 2589 (2013).
[Crossref]

Other (4)

A. Lambrechts, P. Gonzalez, B. Geelen, P. Soussan, K. Tack, and M. Jayapala, “A CMOS-compatible, integrated approach to hyper- and multispectral imaging,” in IEEE International Electron Devices Meeting (2014), pp. 10.5.1.

B. B. Osborne, T. Fearn, and P. H. Hindle, Practical NIR Spectroscopy (Pearson Education, 1993).

Photonic Lattice, Inc., https://www.photonic-lattice.com/en/ .

Tohoku University Micro System Integration Center, http://www.mu-sic.tohoku.ac.jp/index_e.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic view of the PhC-MFA.
Fig. 2.
Fig. 2. Design of the PhC-MFA: (a) layer profile and (b) in-plane channel layout.
Fig. 3.
Fig. 3. Picture of the MFA-integrated CCD sensor.
Fig. 4.
Fig. 4. Gray-scale mosaic pattern captured by the PhC-DPF-mounted CCD: (a) at wavelength=700nm and (b) at 800 nm.
Fig. 5.
Fig. 5. Measured spectral response of the 25-channel PhC-DPF. Normalized by the spectral sensitivity of a bare CCD.
Fig. 6.
Fig. 6. Example of synthesized spectra for creating the correlation matrix Rf.
Fig. 7.
Fig. 7. Result of estimation for an example spectrum. Upper and lower plots correspond to spectral intensity and differential spectra between target and estimated ones. (a) Noise-free case and (b) with optical shot noise, without binning. Hatched area denotes Error=±0.03. (c) With optical shot noise, with 36 data binning. Hatched area is Error=±0.015.
Fig. 8.
Fig. 8. Result of estimation for another example spectrum. (a) Noise-free case; (b) with shot noise, without binning; and (c) with shot noise, with 36 data binning. Hatched areas in (b) and (c) denote Error=±0.03 and ±0.015, respectively.
Fig. 9.
Fig. 9. Result of estimation for another example spectrum. (a) Noise-free case; (b) with shot noise, without binning; and (c) with shot noise, with 36 data binning. Hatched areas in (b) and (c) denote Error=±0.03 and ±0.015, respectively.
Fig. 10.
Fig. 10. Calculated MFA output for various spectral datasets. Upper and lower plots correspond to the filter output intensity (left scale) and variation factor (σ/g¯0i, right scale).
Fig. 11.
Fig. 11. Calculation for MFA output for first three principal components (PCs). Intensities are normalized to that of channel 10.
Fig. 12.
Fig. 12. Estimation result for a monochromatic peak centered at 850 nm, bandwidth=10nm. Red and black curves correspond to original and estimated spectra, respectively. The latter consists of twenty trials with shot noises. Binning of 36 pixels as in Figs. 79 are assumed.

Tables (1)

Tables Icon

Table 1. Summary of RMSE (m: Binning Number)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

g=Hf+n,
|ff˜|2min.
f˜=Ag,
A=RfHT(HRfHT+Rn)1,
gi=g0,i+ni,ni=P(0,g0,i).
RMSE=1NsNti=1Nsj=1Nt|fif˜i,j|2|fi|2,
f(λ)=n=1Nanhn(λ).
gi=(Hf)i=n=1Nanpni,pni=(Hhn)i.
g¯i=(Hf)i

Metrics