Abstract

Long-range surface plasmon polariton waveguides consisting of Au stripes integrated with input and output grating couplers embedded in thick Cytop claddings are proposed and demonstrated experimentally. Under the right conditions, grating couplers enable broadside (top) coupling with good efficiency while producing a low level of background light. The scheme does not require high-quality input and output edge facets, and it simplifies optical alignments. We demonstrate coupling using a cleaved bow-tie fiber and a lensed fiber, and we determine the grating coupling efficiencies in both cases over a broad operating wavelength range. The lensed fiber produces a better overlap with the long-range surface plasmon mode of interest and thus results in a better coupling efficiency with essentially no background light as observed on an infrared camera. The measurements are compared with theoretical results obtained using a realistic model of the structures, including out-of-plane curvature in the grating profile resulting from our fabrication process. The coupling scheme along with the surface plasmon waveguides hold strong potential for biosensing applications.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Grating couplers for (Bloch) long-range surface plasmons on metal stripe waveguides

Maryam Khodami and Pierre Berini
J. Opt. Soc. Am. B 36(7) 1921-1930 (2019)

Passive long-range surface plasmon-polariton devices in Cytop

Hui Fan, Robin Buckley, and Pierre Berini
Appl. Opt. 51(10) 1459-1467 (2012)

Theoretical biosensing performance of surface plasmon polariton Bragg gratings

Kholoud Gazzaz and Pierre Berini
Appl. Opt. 54(7) 1673-1680 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription