Abstract

We have developed short (6–10 cm), connectorized acetylene-filled photonic microcells (PMCs) from photonic bandgap fibers that may replace near-IR frequency references for certain applications based on gas-filled glass cells. By using a tapering technique to seal the microcells, we were able to achieve a high transmission efficiency of 80% and moderate line center accuracy of 10 MHz (1σ). This approaches the National Institute of Standard Technology Standard Reference Material 2517a 10 MHz (2σ) accuracy. Using an earlier Q-tipping technique, 37% off-resonant transmission and 5 MHz accuracy were achieved in finding the line center, but a large 13% etalon-like effect appears on the wings of the optical depth. The etalon-like effect is reduced to less than 1% by using the tapering method. In both cases, the microcells could be connectorized, albeit with a reduction in off-resonant transmission efficiency, for integration into multimode fibers or free-space optical systems. Although contamination is introduced during both fabrication techniques, the P13 PMC line center shifts are small with respect to the sub-Doppler line center. This shows that the PMC can be used for moderate-accuracy frequency measurements. Finally, repeatable measurements show that PMCs are stable in terms of total pressure over approximately one year.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells

Chenchen Wang, Natalie V. Wheeler, Coralie Fourcade-Dutin, Michael Grogan, Thomas D. Bradley, Brian R. Washburn, Fetah Benabid, and Kristan L. Corwin
Appl. Opt. 52(22) 5430-5439 (2013)

Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber

Natalie V. Wheeler, Michael D. W. Grogan, Philip S. Light, Francois Couny, Timothy A. Birks, and Fetah Benabid
Opt. Lett. 35(11) 1875-1877 (2010)

Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn
Opt. Express 14(21) 9576-9583 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
    [Crossref]
  2. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [Crossref]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref]
  6. F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
    [Crossref]
  7. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
    [Crossref]
  8. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004).
    [Crossref]
  9. F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694–5703 (2005).
    [Crossref]
  10. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
    [Crossref]
  11. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [Crossref]
  12. M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
    [Crossref]
  13. P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Opt. Lett. 31, 2538–2540 (2006).
    [Crossref]
  14. P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
    [Crossref]
  15. C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
    [Crossref]
  16. R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.
  17. J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
    [Crossref]
  18. W. Demtröder, Laser Spectroscopy (Springer, 1996).
  19. HITRAN, “HITRAN parameters,” 2018, http://hitran.org/docs/definitions-and-units/ .
  20. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10  kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [Crossref]
  21. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
    [Crossref]
  22. THORLABS, 2018, https://www.openoptogenetics.org/images/5/59/Guide_to_Connectorization_and_Polishing_of_Optical_Fibers.pdf .
  23. S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.
  24. K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).
  25. R. Thapa, K. L. Corwin, and B. R. Washburn, “Splicing hollow-core photonic bandgap fibers to step-index fibers using an arc fusion splicer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB64.
  26. M. S. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, “LMFIT: non-linear least-square minimization and curve-fitting for python,” 2017, https://lmfit.github.io/lmfit-py .
  27. SpectralCalc, 2018, http://www.spectralcalc.com/info/about.php .
  28. E. L. Williams, “Diffusion of oxygen in fused silica,” J. Am. Ceram. Soc. 48, 190–194 (1965).
    [Crossref]

2015 (2)

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]

2013 (1)

2009 (1)

2006 (2)

2005 (4)

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694–5703 (2005).
[Crossref]

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

2004 (2)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004).
[Crossref]

2003 (3)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

2000 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

1965 (1)

E. L. Williams, “Diffusion of oxygen in fused silica,” J. Am. Ceram. Soc. 48, 190–194 (1965).
[Crossref]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Anstie, J. D.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Auwera, J. V.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
[Crossref]

Benabid, F.

P. S. Light, J. D. Anstie, F. Benabid, and A. N. Luiten, “Hermetic optical-fiber iodine frequency standard,” Opt. Lett. 40, 2703–2706 (2015).
[Crossref]

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10  kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]

P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Opt. Lett. 31, 2538–2540 (2006).
[Crossref]

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694–5703 (2005).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref]

Bradley, T. D.

Brusch, A.

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

Campargue, A.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
[Crossref]

Corwin, K.

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

Corwin, K. L.

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10  kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
[Crossref]

S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.

K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).

R. Thapa, K. L. Corwin, and B. R. Washburn, “Splicing hollow-core photonic bandgap fibers to step-index fibers using an arc fusion splicer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB64.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer, 1996).

Faheem, M.

Fourcade-Dutin, C.

Gaeta, A. L.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

Gilbert, S. L.

Grogan, M.

Hald, J.

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

J. Henningsen, J. Hald, and J. C. Petersen, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[Crossref]

Hansen, T. P.

Henningsen, J.

Herman, M.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
[Crossref]

Hosseini-Zavareh, S.

S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

Idrissi, M. I. E.

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
[Crossref]

Jones, A. M.

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Light, P. S.

Lim, J.

Luder, R.

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).

Ludvigsen, H.

Luiten, A. N.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Naweed, A.

Nicholson, J. W.

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Petersen, J. C.

Ritari, T.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Russell, P. S.

F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref]

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13, 5694–5703 (2005).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Simonsen, H. R.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Sørensen, T.

Swann, W. C.

Thapa, R.

Thirugnanasambandam, M.

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

Thirugnanasambandam, M. P.

S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

Tillman, K. A.

Triches, M.

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

Tuominen, J.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Wang, C.

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref]

K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

Washburn, B.

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).

Washburn, B. R.

C. Wang, N. V. Wheeler, C. Fourcade-Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells,” Appl. Opt. 52, 5430–5439 (2013).
[Crossref]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10  kHz accuracy of an optical frequency reference based on 12C2H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[Crossref]

R. Thapa, K. L. Corwin, and B. R. Washburn, “Splicing hollow-core photonic bandgap fibers to step-index fibers using an arc fusion splicer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB64.

S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.

Weaver, O. L.

Weerasinghe, H. W. K.

S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

Wheeler, N.

Wheeler, N. V.

Williams, E. L.

E. L. Williams, “Diffusion of oxygen in fused silica,” J. Am. Ceram. Soc. 48, 190–194 (1965).
[Crossref]

Wu, S.

Zavareh, S. H.

K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).

Appl. Opt. (1)

Appl. Phys. B (1)

M. Triches, A. Brusch, and J. Hald, “Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique,” Appl. Phys. B 121, 251–258 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

E. L. Williams, “Diffusion of oxygen in fused silica,” J. Am. Ceram. Soc. 48, 190–194 (1965).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

M. Herman, A. Campargue, M. I. E. Idrissi, and J. V. Auwera, “Vibrational spectroscopic database on acetylene, X1Σg+ (12C2H2, 12C2D2, and 13C2H2),” J. Phys. Chem. Ref. Data 32, 921–1361 (2003).
[Crossref]

Nature (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[Crossref]

Science (3)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref]

Other (9)

R. Luder, S. Hosseini-Zavareh, C. Wang, M. Thirugnanasambandam, B. Washburn, and K. Corwin, “Short acetylene-filled photonic bandgap fiber cells toward practical industry standards,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SM2H.6.

W. Demtröder, Laser Spectroscopy (Springer, 1996).

HITRAN, “HITRAN parameters,” 2018, http://hitran.org/docs/definitions-and-units/ .

THORLABS, 2018, https://www.openoptogenetics.org/images/5/59/Guide_to_Connectorization_and_Polishing_of_Optical_Fibers.pdf .

S. Hosseini-Zavareh, M. P. Thirugnanasambandam, H. W. K. Weerasinghe, B. R. Washburn, and K. L. Corwin, “Improved acetylene-filled photonic bandgap fiber cells fabricated using a tapering method,” in Frontiers in Optics/Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW4A.95.

K. L. Corwin, C. Wang, R. Luder, S. H. Zavareh, and B. Washburn, “Fluid-filled hollow optical fiber cell,” International patent WO2017165381A1 (21 March 2016).

R. Thapa, K. L. Corwin, and B. R. Washburn, “Splicing hollow-core photonic bandgap fibers to step-index fibers using an arc fusion splicer,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper JWB64.

M. S. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, “LMFIT: non-linear least-square minimization and curve-fitting for python,” 2017, https://lmfit.github.io/lmfit-py .

SpectralCalc, 2018, http://www.spectralcalc.com/info/about.php .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Camera image of the splice between a 20 μm core PBGF (HC19-1550 Thorlabs) on the left-hand side and SMF (SMF28E) on the right-hand side, (b) camera image showing the Q-tipped end of the PBGF, (c) camera image showing the tapered end of the PBGF.
Fig. 2.
Fig. 2. Power measurements used to characterize cell transmission efficiency. A, power measured out of fiber-coupled laser source; B, power measured after collapsing fiber cell; C, power measured through 400 μm [BFL48-400 THORLABS], 200 μm [FT200EMT THORLABS], and 62.5 μm [GIF625 THORLABS] core multimode fibers. All power measurements are made off-resonance in the case of acetylene-filled cells. The laser wavelength is approximately 1532 nm.
Fig. 3.
Fig. 3. Schematic for characterizing the pressure inside PMCs: a diode laser [SANTEC tunable semiconductor laser TSL-210] works in the 1.5 μm range. Ring cavity is for relative frequency calibration. PD 1 and PD 2, large-area detectors [IR photoreceiver] for inspecting the ring cavity transmission and PMC P13 absorption line; FC, 30%–70% fiber coupled beam splitter; OI, optical isolator. Two Red Pitayas are used as DAQ systems. Signal generator and ring cavity transmission to PD 2 are connected to DAQ 1 channels 1 and 2. PMC absorption to PD 1 is connected to DAQ 2 channel 1. Blue dashed lines are electrical signals.
Fig. 4.
Fig. 4. (a) Calibrated transmittance for PMC no. 48 registered by PD 1 in Fig. 3. The feature on the left side of the P13 line shows the H 12 C 13 CH absorption line (second isotopologue of acetylene) approximately 1500 MHz away from the P13 peak. (b) Calibrated data for ramp voltage registered by DAQ 1 channel 1, which is used to drive the PZT of the tunable laser and ring cavity transmission derived from PD 2 with free spectral range ( FSR ) = 93 ± 1 MHz . The green line shows the ring cavity transmission, and the red line is the ramp voltage.
Fig. 5.
Fig. 5. PMC no. 53 fitted with a Voigt profile to find the pressure broadening with residuals.
Fig. 6.
Fig. 6. Comparison of saturated absorption spectroscopy (SAS) reference simultaneously with optical depth of connectorized PMC no. 53 and SAS residuals. X Cell is the center of the PMC P13 line, X SD is the center of the sub-Doppler, and X D is the center of the Doppler. The solid red lines show the fittings to the sub-Doppler and cell centers.
Fig. 7.
Fig. 7. (a) Picture of the connectorized tapered PMC no. 53, (b) schematic of a connectorized tapered PMC.

Tables (5)

Tables Icon

Table 1. Recipe for Q-Tipping the Open End of PBGF

Tables Icon

Table 2. Recipe for Tapering the Open End of PBGF

Tables Icon

Table 3. Transmission and Insertion Loss for 20 μm Core Tapered Unconnectorized Cell Nos. 52 and 53

Tables Icon

Table 4. Characterization of PMC No. 53 and Half-Cell A

Tables Icon

Table 5. Long-Term Stability of Connectorized Tapered PMC No. 53 and Unconnectorized Q-Tipped PMC Nos. 17 and 19

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α ( v ) = n S g ( ν ν 0 ) .
A = 0 α ( v ) L d v = 0 P a L k T S g ( v v 0 ) d v ,
P a = A k T L S .

Metrics