Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature perturbation related to the invisible ink vibrationally excited nitric oxide monitoring (VENOM) technique: a simulation study

Abstract

The limits of applicability of the invisible ink variant of the vibrationally excited nitric oxide monitoring (VENOM) technique for three distinct flow fields is reported in this work. This technique involves the generation of a grid of vibrationally excited NO (X,Π2) by exciting the NO A-X electronic transition at 226 nm, which subsequently relaxes via fluorescence and collisional quenching to produce vibrationally excited NO (X,Π2). This grid is then probed by two laser sheets tuned to distinct rotational states. The resulting images allow for the simultaneous measurement of temperature and velocity. The flow fields presented in this work provide a range of NO concentrations, vibrational lifetimes, pressures, temperatures, and collisional quenching, which explore the applicability of the invisible ink variant to a wide range of conditions. We have modelled the initial NO, O2, and N2 vibrational and rotational energy distribution resulting from the combination of fluorescence and quenching of electronically excited NO. The subsequent rethermalization of the sample, in particular the long-time vibrational relaxation, has been modelled using a forced harmonic oscillator model. The time-dependent temperature perturbation due to the invisible ink technique is evaluated for two distinct timescales: a short-timescale temperature rise resulting from collisional quenching and rotational/translational thermalization and a long-timescale temperature rise caused by vibrational thermalization. Under low pressures where fluorescence dominates quenching, there is minimal temperature perturbation of the flow field on the timescale of a VENOM measurement, and the short-timescale temperature perturbation only becomes significant at high NO seed concentrations. The predicted signal-to-noise ratio of the invisible ink method is unaffected for low-pressure, low-temperature flow fields. However, preserving signal-to-noise ratio for a high-temperature, high-pressure flow field could prove challenging due to the impact of quenching and self-absorption. Overall, we find that the invisible ink method is predicted to be a viable laser-based diagnostic for velocimetry and thermometry over a wide range of experimental conditions.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Vibrationally excited hydroxyl tagging velocimetry

Nathan Grady and Robert W. Pitz
Appl. Opt. 53(31) 7182-7188 (2014)

Simultaneous three-dimensional velocimetry and thermometry in gaseous flows using the stereoscopic vibrationally excited nitric oxide monitoring technique

Feng Pan, Rodrigo Sánchez-González, Madison H. McIlvoy, Rodney D. W. Bowersox, and Simon W. North
Opt. Lett. 41(7) 1376-1379 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.