Abstract

Digital micromirror devices (DMDs) show great promise for use as intensity spatial light modulators. When used in conjunction with pulsed lasers of a timescale below the DMD pixel switching time, DMDs are generally only used as binary intensity masks (i.e., “on” or “off” intensity for each mask pixel). In this work, we show that by exploiting the numerical aperture of an optical system during the design of binary masks, near-continuous intensity control can be accessed, whilst still maintaining high-precision laser-machining resolution. Complex features with ablation depths up to 60  nm, corresponding to grayscale values in bitmap images, are produced in single pulses via ablation with 150 fs laser pulses on nickel substrates, with lateral resolutions of 2.5  μm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast multi-layer subtractive patterning

Daniel J. Heath, Taimoor H. Rana, Rupert A. Bapty, James. A Grant-Jacob, Yunhui Xie, Robert W. Eason, and Ben Mills
Opt. Express 26(9) 11928-11933 (2018)

Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device

Daniel J. Heath, James A. Grant-Jacob, Matthias Feinaeugle, Ben Mills, and Robert W. Eason
Appl. Opt. 56(22) 6398-6404 (2017)

Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images

Daniel J. Heath, Ben Mills, Matthias Feinaeugle, and Robert W. Eason
Appl. Opt. 54(16) 4984-4988 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15, 14488–14497 (2007).
    [Crossref]
  2. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
    [Crossref]
  3. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
    [Crossref]
  4. R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Spatially modulated laser pulses for printing electronics,” Appl. Opt. 54, F70–F77 (2015).
    [Crossref]
  5. Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
    [Crossref]
  6. B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
    [Crossref]
  7. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
    [Crossref]
  8. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  9. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  10. L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
    [Crossref]
  11. K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
    [Crossref]
  12. M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
    [Crossref]
  13. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18, 17059–17065 (2010).
    [Crossref]
  14. R. D. Simmonds, P. S. Salter, A. Jesacher, and M. J. Booth, “Three dimensional laser microfabrication in diamond using a dual adaptive optics system,” Opt. Express 19, 24122–24128 (2011).
    [Crossref]
  15. D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54, 4984–4988 (2015).
    [Crossref]
  16. M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
    [Crossref]
  17. D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5, 1129–1136 (2015).
    [Crossref]
  18. D. J. Heath, “Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device,” Appl. Opt. 56, 6398–6404 (2017).
    [Crossref]
  19. Y. X. Ren, R. De, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527, 447–470 (2015).
  20. X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
    [Crossref]
  21. M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).
  22. W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
    [Crossref]
  23. J. Cheng, C. Gu, D. Zhang, and S.-C. Chen, “High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device,” Opt. Lett. 40, 4875–4878 (2015).
    [Crossref]
  24. R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23, 422–430 (2015).
    [Crossref]
  25. Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).
  26. X.-Y. Ding, Y.-X. Ren, L. Gong, Z.-X. Fang, and R.-D. Lu, “Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication,” Appl. Opt. 53, 5307 (2014).

2017 (1)

2016 (2)

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

2015 (8)

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5, 1129–1136 (2015).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54, 4984–4988 (2015).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Spatially modulated laser pulses for printing electronics,” Appl. Opt. 54, F70–F77 (2015).
[Crossref]

Y. X. Ren, R. De, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527, 447–470 (2015).

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

J. Cheng, C. Gu, D. Zhang, and S.-C. Chen, “High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device,” Opt. Lett. 40, 4875–4878 (2015).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. Mathews, and A. Piqué, “Laser forward transfer using structured light,” Opt. Express 23, 422–430 (2015).
[Crossref]

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

2014 (4)

X.-Y. Ding, Y.-X. Ren, L. Gong, Z.-X. Fang, and R.-D. Lu, “Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication,” Appl. Opt. 53, 5307 (2014).

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

2013 (2)

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

2012 (1)

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

2008 (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

2007 (1)

2006 (1)

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

2005 (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
[Crossref]

Alloncle, A. P.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

Auyeung, R. C. Y.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Beck, R. J.

Booth, M. J.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Cao, A.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Chen, S.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

Chen, S.-C.

Chen, Y.

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

Cheng, J.

Cho, M. W.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Cho, S. H.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Choi, B.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Constantinescu, C.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

De, R.

Y. X. Ren, R. De, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527, 447–470 (2015).

Dearden, G.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Delaporte, P.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

DeLu, R.

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

Deng, Q.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Ding, X.-Y.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Eason, R. W.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5, 1129–1136 (2015).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54, 4984–4988 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Fang, N.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
[Crossref]

Fang, Z. X.

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

Fang, Z.-X.

Fearon, E.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Feinaeugle, M.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54, 4984–4988 (2015).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5, 1129–1136 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
[Crossref]

Fukua, N.

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

Gong, L.

Y. X. Ren, R. De, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527, 447–470 (2015).

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

X.-Y. Ding, Y.-X. Ren, L. Gong, Z.-X. Fang, and R.-D. Lu, “Microscopic lithography with pixelate diffraction of a digital micro-mirror device for micro-lens fabrication,” Appl. Opt. 53, 5307 (2014).

Grant-Jacob, J. A.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5, 1129–1136 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
[Crossref]

Gu, C.

Hand, D. P.

Heath, D. J.

Hirai, Y.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Hirao, K.

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

Hu, S.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Huang, K.

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Iwasaki, W.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Jesacher, A.

Kang, N. H.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Kato, Y.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Kelemen, L.

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Kempen, F.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Keulen, F.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Kim, H.

Kim, K. R.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Kuang, Z.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Kudo, Y.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Larmande, Y.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Liu, D.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Lu, R.-D.

Lu, Y.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

Ma, X.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

MacPherson, W. N.

Maeda, R.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Mapili, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

Mashanovich, G. Z.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

Mathews, S.

Mills, B.

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

D. J. Heath, B. Mills, M. Feinaeugle, and R. W. Eason, “Rapid bespoke laser ablation of variable period grating structures using a digital micromirror device for multi-colored surface images,” Appl. Opt. 54, 4984–4988 (2015).
[Crossref]

D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills, and R. W. Eason, “Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films,” Opt. Mater. Express 5, 1129–1136 (2015).
[Crossref]

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
[Crossref]

Miura, K.

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Ogino, H.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Ormos, P.

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Pang, H.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Parry, J. P.

Peng, Y.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Perrie, W.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Piqué, A.

Rapp, L.

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

Ren, Y. X.

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

Y. X. Ren, R. De, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527, 447–470 (2015).

Ren, Y.-X.

Roy, K.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

Sakakura, M.

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

Salter, P. S.

Sawada, R.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Shephard, J. D.

Shi, L.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Shibata, H.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Shimotsuma, Y.

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

Shin, B. S.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Simmonds, R. D.

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Suhali, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Sun, C.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tabata, O.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Takeshita, T.

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tsuchiya, T.

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Valkai, S.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Waddie, A.

Watkins, K.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Weston, N. J.

Wu, D. M.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
[Crossref]

Yi, J.

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Zhang, D.

Zhang, M.

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Zhang, X.

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
[Crossref]

Ann. Phys. (1)

Y. X. Ren, R. De, and L. Gong, “Tailoring light with a digital micromirror device,” Ann. Phys. 527, 447–470 (2015).

Appl. Opt. (4)

Appl. Phys. A (2)

M. Feinaeugle, D. J. Heath, B. Mills, J. A. Grant-Jacob, G. Z. Mashanovich, and R. W. Eason, “Laser-induced backward transfer of nanoimprinted polymer elements,” Appl. Phys. A 122, 398–402 (2016).
[Crossref]

L. Rapp, C. Constantinescu, Y. Larmande, A. P. Alloncle, and P. Delaporte, “Smart beam shaping for the deposition of solid polymeric material by laser forward transfer,” Appl. Phys. A 117, 333–339 (2014).
[Crossref]

Appl. Surf. Sci. (2)

K. R. Kim, J. Yi, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, “SLM-based maskless lithography for TFT-LCD,” Appl. Surf. Sci. 255, 7835–7840 (2009).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255, 6582–6588 (2009).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

J. Appl. Phys. (1)

Y. X. Ren, Z. X. Fang, L. Gong, K. Huang, Y. Chen, and R. DeLu, “Dynamic generation of Ince-Gaussian modes with a digital micromirror device,” J. Appl. Phys. 117, 133106 (2015).

J. Biomed. Mater. Res. A (1)

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds,” J. Biomed. Mater. Res. A 77, 396–405 (2006).
[Crossref]

J. Laser Appl. (1)

B. Mills, D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, and R. W. Eason, “Laser ablation via programmable image projection for submicron dimension machining in diamond,” J. Laser Appl. 26, 041501 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

W. Iwasaki, T. Takeshita, Y. Peng, H. Ogino, H. Shibata, Y. Kudo, R. Maeda, and R. Sawada, “Maskless lithographic fine patterning on deeply etched or slanted surfaces, and grayscale lithography, using newly developed digital mirror device lithography equipment,” Jpn. J. Appl. Phys. 51, 06FB05 (2012).
[Crossref]

Manip. Manuf. Meas. Nanoscale (1)

M. Zhang, Q. Deng, L. Shi, A. Cao, H. Pang, and S. Hu, “A gray matching method for cylindrical lens array fabrication based on DMD lithography,” Manip. Manuf. Meas. Nanoscale 127, 145–147 (2016).

Nat. Photonics (1)

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605–609 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Proc. SPIE (1)

M. Sakakura, N. Fukua, Y. Shimotsuma, K. Hirao, and K. Miura, “Hologram design for holographic laser machining inside transparent materials,” Proc. SPIE 8607, 86070V (2013).
[Crossref]

Procedia Eng. (1)

X. Ma, Y. Kato, F. Kempen, Y. Hirai, T. Tsuchiya, F. Keulen, and O. Tabata, “Multiple patterning with process optimization method for maskless DMD-based grayscale lithography,” Procedia Eng. 120, 1091–1094 (2015).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Sens. Actuators A Phys. (1)

C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sens. Actuators A Phys. 121, 113–120 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Target intensity pattern is a 2×2 checkerboard with two diagonally opposite squares at half the intensity of the remaining two. Different binary masks are used to attempt to recreate this distribution. The effect of spatial filtering is shown for (a) an ordered mask, i.e., every other pixel “on” in greyscale region, (b) a random mask, (c) the algorithmic approach presented here, and (d) a mask with continuous intensity control.
Fig. 2.
Fig. 2. Experimental schematic showing the use of a DMD as a binary spatial light modulator.
Fig. 3.
Fig. 3. Selection of masks and corresponding ablated structures, showing (top row) the intended intensity pattern, (middle row) the binary mask as displayed on the DMD, and (bottom row) the resulting interferometrically measured depth profiles of ablated structures in electroless nickel. Part (a) was generated using the random selection method shown in Fig. 1(b), while (b)–(d) were generated using the algorithm described in Section 2. Each structure was machined in a single laser pulse. In (a), the mask was generated using the random selection method shown in Fig. 1(b) and exposed at a fluence of 2.42  mJ/cm2. In (b), the DMD was exposed at a fluence of 0.62  mJ/cm2, in (c) at 0.88  mJ/cm2, and in (d) at 1.41  mJ/cm2. The color map in the top row represents intended intensity, while in the bottom row it represents depth of ablation in nanometers.
Fig. 4.
Fig. 4. Image of one of the authors, ablated into electroless nickel in a single femtosecond pulse with a fluence of 1.41  mJ/cm2 at the DMD. (a) The original image with the color map relating to intensity, (b) the binary mask displayed on the DMD, and (c) the interferometrically measured depth profile in electroless nickel with the color map in nanometers.

Tables (1)

Tables Icon

Table 1. Mean and Standard Deviation Values of Points Within the Intended 50% Intensity Regions from the Projected Intensity Patterns in Fig. 1

Metrics