Abstract

This paper proposes a 360-deg large-scale multiprojection light-field 3D display system, which can reconstruct the light field of models in real space. The reconstructed contents can be observed by multiple viewers from different angles and positions simultaneously. In this system, 360 projectors project images onto a cylindrical light-field diffusion screen whose height is 1.8 m and diameter is 3 m. When moving around the system, viewers can see 3D scenes with smooth-motion parallax, and the frame rate can reach 30 fps and above. To achieve a large-scale display, we design a wide-field lens with cylindrical lenses to enlarge the projection image. To promote efficiency of data transmission and render 3D contents in real time, we apply computers equipped with multiple graphic cards, and display data are divided by field programmable gate array. Finally, a 360-deg light-field autocalibration method based on CCD and multiview sampling is proposed, whose calibration effect is strongly confirmed by experiment results.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
360  deg full-parallax light-field display using panoramic camera

Chen Su, Xinxin Zhou, Haifeng Li, Qing Yang, Zhechao Wang, and Xu Liu
Appl. Opt. 55(17) 4729-4735 (2016)

Omnidirectional-view three-dimensional display based on rotating selective-diffusing screen and multiple mini-projectors

Weitao Song, Qiudong Zhu, Yue Liu, and Yongtian Wang
Appl. Opt. 54(13) 4154-4160 (2015)

Light-field and holographic three-dimensional displays [Invited]

Masahiro Yamaguchi
J. Opt. Soc. Am. A 33(12) 2348-2364 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [invited],” Appl. Opt. 50, H87–H115 (2011).
    [Crossref]
  2. W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graphics 23, 814–824 (2004).
    [Crossref]
  3. N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (1999), Vol. 2, pp. 497–502.
  4. F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
    [Crossref]
  5. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [Crossref]
  6. T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.
  7. H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.
  8. T. Inoue and Y. Takaki, “Table screen 360-degree holographic display using circular viewing-zone scanning,” Opt. Express 23, 6533–6542 (2015).
    [Crossref]
  9. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
    [Crossref]
  10. X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49, 4915–4920 (2010).
    [Crossref]
  11. C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.
  12. S. Yoshida, “fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays,” Opt. Express 24, 13194–13203 (2016).
    [Crossref]
  13. T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.
  14. T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.
  15. T. Balogh, “The holovizio system,” Proc. SPIE 6055, 60550U (2006).
    [Crossref]
  16. J. A. I. Guitián, E. Gobbetti, and F. Marton, “View-dependent exploration of massive volumetric models on large-scale light field displays,” Visual Comput. 26, 1037–1047 (2010).
    [Crossref]
  17. P. T. Kovács, A. Boev, R. Bregović, and A. Gotchev, “Quality measurements of 3D light-field displays,” in International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, 2014.
  18. J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.
  19. J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
    [Crossref]
  20. Q. Zhong, Y. Peng, H. Li, C. Su, W. Shen, and X. Liu, “Multiview and light-field reconstruction algorithms for 360 multiple-projector-type 3D display,” Appl. Opt. 52, 4419–4425 (2013).
    [Crossref]
  21. Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.
  22. B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
    [Crossref]
  23. M. Levoy and P. Hanrahan, “Light field rendering,” in 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

2016 (1)

2015 (2)

T. Inoue and Y. Takaki, “Table screen 360-degree holographic display using circular viewing-zone scanning,” Opt. Express 23, 6533–6542 (2015).
[Crossref]

J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
[Crossref]

2014 (1)

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (2)

X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49, 4915–4920 (2010).
[Crossref]

J. A. I. Guitián, E. Gobbetti, and F. Marton, “View-dependent exploration of massive volumetric models on large-scale light field displays,” Visual Comput. 26, 1037–1047 (2010).
[Crossref]

2009 (1)

2007 (1)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

2006 (1)

T. Balogh, “The holovizio system,” Proc. SPIE 6055, 60550U (2006).
[Crossref]

2005 (1)

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

2004 (1)

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graphics 23, 814–824 (2004).
[Crossref]

Agács, T.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Agocs, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

Ahn, C. H.

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

Balet, O.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Balogh, T.

T. Balogh, “The holovizio system,” Proc. SPIE 6055, 60550U (2006).
[Crossref]

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Bettio, F.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

Boev, A.

P. T. Kovács, A. Boev, R. Bregović, and A. Gotchev, “Quality measurements of 3D light-field displays,” in International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, 2014.

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

Bouvier, E.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Bregovic, R.

P. T. Kovács, A. Boev, R. Bregović, and A. Gotchev, “Quality measurements of 3D light-field displays,” in International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, 2014.

Chen, B.

Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.

Chen, B.-S.

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

Chen, N.

Choi, H.-J.

Choi, S. Y.

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

Curless, B.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

Dodgson, N. A.

N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (1999), Vol. 2, pp. 497–502.

Forgacs, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

Forgács, T.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Gao, H.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Georgiev, T.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

Gobbetti, E.

J. A. I. Guitián, E. Gobbetti, and F. Marton, “View-dependent exploration of massive volumetric models on large-scale light field displays,” Visual Comput. 26, 1037–1047 (2010).
[Crossref]

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

Gotchev, A.

P. T. Kovács, A. Boev, R. Bregović, and A. Gotchev, “Quality measurements of 3D light-field displays,” in International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, 2014.

Guitián, J. A. I.

J. A. I. Guitián, E. Gobbetti, and F. Marton, “View-dependent exploration of massive volumetric models on large-scale light field displays,” Visual Comput. 26, 1037–1047 (2010).
[Crossref]

Hahn, J.

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” in 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

Hong, J.

Hong, K.

Inoue, T.

Intwala, C.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

Kim, C. Y.

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

Kim, H.

Kim, Y.

Kovács, P. T.

P. T. Kovács, A. Boev, R. Bregović, and A. Gotchev, “Quality measurements of 3D light-field displays,” in International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, 2014.

Lang, S.

N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (1999), Vol. 2, pp. 497–502.

Lee, B.

Lee, J.-H.

J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
[Crossref]

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

Levoy, M.

M. Levoy and P. Hanrahan, “Light field rendering,” in 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

Li, H.

Q. Zhong, Y. Peng, H. Li, C. Su, W. Shen, and X. Liu, “Multiview and light-field reconstruction algorithms for 360 multiple-projector-type 3D display,” Appl. Opt. 52, 4419–4425 (2013).
[Crossref]

X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49, 4915–4920 (2010).
[Crossref]

C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.

Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.

Li, H.-F.

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

Liu, J.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Liu, P.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Liu, X.

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

Q. Zhong, Y. Peng, H. Li, C. Su, W. Shen, and X. Liu, “Multiview and light-field reconstruction algorithms for 360 multiple-projector-type 3D display,” Appl. Opt. 52, 4419–4425 (2013).
[Crossref]

X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49, 4915–4920 (2010).
[Crossref]

C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.

Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.

Martin, T.

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

Marton, F.

J. A. I. Guitián, E. Gobbetti, and F. Marton, “View-dependent exploration of massive volumetric models on large-scale light field displays,” Visual Comput. 26, 1037–1047 (2010).
[Crossref]

Matusik, W.

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graphics 23, 814–824 (2004).
[Crossref]

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

Min, S.-W.

Moore, J.

N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (1999), Vol. 2, pp. 497–502.

Nam, D.

J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
[Crossref]

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

Nayar, S. K.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

Park, D.-S.

J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
[Crossref]

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

Park, J.

J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
[Crossref]

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

Park, J.-H.

Peng, Y.

Pfister, H.

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graphics 23, 814–824 (2004).
[Crossref]

Salesin, D.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

Shen, W.

Speranza, F.

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

Stelmach, L.

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

Su, C.

Q. Zhong, Y. Peng, H. Li, C. Su, W. Shen, and X. Liu, “Multiview and light-field reconstruction algorithms for 360 multiple-projector-type 3D display,” Appl. Opt. 52, 4419–4425 (2013).
[Crossref]

C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.

Takaki, Y.

Tam, W. J.

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

Xia, X.

Xu, H.-S.

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

Xu, L.

Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.

C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

Yan, C.

Yao, Q.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Yoshida, S.

Yu, Y.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Zanetti, G.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

Zeng, C.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Zheng, H.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Zheng, K. C.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

Zheng, Z.

X. Xia, Z. Zheng, X. Liu, H. Li, and C. Yan, “Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen,” Appl. Opt. 49, 4915–4920 (2010).
[Crossref]

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

Zhong, Q.

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

Q. Zhong, Y. Peng, H. Li, C. Su, W. Shen, and X. Liu, “Multiview and light-field reconstruction algorithms for 360 multiple-projector-type 3D display,” Appl. Opt. 52, 4419–4425 (2013).
[Crossref]

Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.

C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.

ACM Trans. Graph. (1)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360 light field display,” ACM Trans. Graph. 26, 40 (2007).
[Crossref]

ACM Trans. Graphics (1)

W. Matusik and H. Pfister, “3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes,” ACM Trans. Graphics 23, 814–824 (2004).
[Crossref]

Appl. Opt. (4)

Opt. Eng. (1)

B.-S. Chen, Q. Zhong, H.-F. Li, X. Liu, and H.-S. Xu, “Automatic geometrical calibration for multiprojector-type light field three-dimensional display,” Opt. Eng. 53, 073107 (2014).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

J.-H. Lee, J. Park, D. Nam, and D.-S. Park, “Color and brightness uniformity compensation of a multi-projection 3D display,” Proc. SPIE 9579, 95790N (2015).
[Crossref]

T. Balogh, “The holovizio system,” Proc. SPIE 6055, 60550U (2006).
[Crossref]

F. Speranza, W. J. Tam, T. Martin, L. Stelmach, and C. H. Ahn, “Perceived smoothness of viewpoint transition in multi-viewpoint stereoscopic displays,” Proc. SPIE 5664, 72–82 (2005).
[Crossref]

Visual Comput. (1)

J. A. I. Guitián, E. Gobbetti, and F. Marton, “View-dependent exploration of massive volumetric models on large-scale light field displays,” Visual Comput. 26, 1037–1047 (2010).
[Crossref]

Other (10)

P. T. Kovács, A. Boev, R. Bregović, and A. Gotchev, “Quality measurements of 3D light-field displays,” in International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, 2014.

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “32.1: optimal projector configuration design for 300-mpixel light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2013), Vol. 44, pp. 400–403.

T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio, E. Gobbetti, and G. Zanetti, “A scalable hardware and software system for the holographic display of interactive graphics applications,” in Eurographics (Short Presentations) (2005), pp. 109–112.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference (IEEE, 2006), p. 311.

N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” in International Broadcasting Convention (1999), Vol. 2, pp. 497–502.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. K. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” in Eurographics Symposium on Rendering (2006), pp. 263–272.

H. Gao, J. Liu, Y. Yu, P. Liu, C. Zeng, Q. Yao, H. Zheng, and Z. Zheng, “Real-time holographic video display using holographic liquid crystals with extended response to future holographic 3D TV,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2015), paper DTh4A-6.

C. Su, Q. Zhong, L. Xu, H. Li, and X. Liu, “24.2: Real-time rendering 360° floating light-field 3D display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 346–349.

M. Levoy and P. Hanrahan, “Light field rendering,” in 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

Q. Zhong, H. Li, X. Liu, B. Chen, and L. Xu, “24.3: Adaptive optimization of rendering for multi-projector-type light field display,” in SID Symposium Digest of Technical Papers (Wiley, 2015), Vol. 46, pp. 350–353.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic diagram of a 360-deg multiprojection light-field display system. (b) General structure of light-field mapping principle. (c) On x-z plane. (d) On yz plane.
Fig. 2.
Fig. 2. (a) Top view of lens imaging. (b) Structure of the projection lens. (c) MTF chart of the projection lens. Maximum on the abscissa is the cut-off frequency of the projection lens.
Fig. 3.
Fig. 3. (a) Grid image in the projector. The red lines indicate the horizontal edge of the object that corresponds to the horizontal edge of field of view. (b) Grid image on the screen. θ is the horizontal field angle. Y is the height of image on the screen. The red lines indicate the horizontal edge of the field of view. (c) Real grid image on screen. Numbers on the bottom of each subfigure represent the corresponding field in the complete projection image.
Fig. 4.
Fig. 4. (a) Working principles of splitter 1 and splitter 2. (b) Connection relationship between graphic cards and splitters.
Fig. 5.
Fig. 5. Monitor arrangement and rendering window setting. Bigger monitors represent splitter 1 with the resolution 2400×1800, and the smaller ones represent splitter 2 with the resolution 800×1800.
Fig. 6.
Fig. 6. (a) Structure of the automatic calibration system. Screen marks are attached to screen for simulating shape of the screen. (b) The normalized plane coordinate system SOT, which is established by spreading the cylinder screen. Start angle (0 deg) of the screen will be set as 0 in SOT, with end angle (360 deg) set as 1. Bottom of the screen will be set as 0, with top set as 1.
Fig. 7.
Fig. 7. Flow chart of software.
Fig. 8.
Fig. 8. Structure of the real system. 360 projectors are arranged in a circle under a cylindrical light-field screen, and the circle is homocentric with the screen.
Fig. 9.
Fig. 9. (a) Grid before calibration. (b) Grid after calibration.
Fig. 10.
Fig. 10. Static girl model and dynamic soldier model. (a) Girl pictures taken from different angles. (b) Real size of the girl. The screen is 1.8 m high. (c) Screenshot of the dynamic soldier.

Tables (3)

Tables Icon

Table 1. Specification of Splitters

Tables Icon

Table 2. Parameters of the Display System

Tables Icon

Table 3. Comparison of Frame Rate Between Different Models

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{zszdpz=xsxx,zs2+xs2=rs2,
ys=(yvy)(zsz)zvz+y.
Ww*h*f*N.
P(u,v)=i=0Nj=0MBiN(u)BjM(v)pij;u,v[0,1].
Scr(s,t)=B1{ScrCami(a,b)}.
ProjScri(s,t)=B1{ProjCami(a,b)}.
Proj(m,n)=B2{ProjScr(a,b)}.

Metrics