Abstract

The signal registered by a plane photodetector placed behind an optically inhomogeneous object irradiated by two coherent Gaussian beams intersecting inside the object at a small angle to each other is calculated in the single-scattering approximation. In the considered arrangement, only one of the beams hits the detector and serves as the local oscillator for heterodyning the field scattered by the other beam (not hitting the detector). The results of analytical calculation show that the signal detected in this way is contributed only by the region of the inhomogeneous object where the two beams overlap. By moving the scatterer with respect to the overlap region and monitoring the heterodyned signal, with the aid of the derived expression, one can reconstruct the refractive-index relief of the scatterer. We also propose a simple method of spatial mapping of the sample that allows one to estimate the magnitude and characteristic dimensions of the inhomogeneities.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical heterodyne detection of laser-induced gratings

A. A. Maznev, K. A. Nelson, and J. A. Rogers
Opt. Lett. 23(16) 1319-1321 (1998)

Optimum conditions for heterodyne detection of light*

L. Mandel and E. Wolf
J. Opt. Soc. Am. 65(4) 413-420 (1975)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription