Abstract

Multidimensional data recording inside nanoporous high-silica glass by a femtosecond laser beam has been investigated. It is shown that three femtosecond laser pulses at pulse repetition rates up to 1 MHz are sufficient for recording 3 bits of information inside nanoporous glass, which is an order of magnitude lower than the number of pulses required for data writing in silica glass and provides a corresponding gain in the data writing speed. Multilayer data recording and reading were demonstrated providing the storage density corresponding to the capacity of 25 GB in the optical compact disc form factor. An outstanding thermal stability of the proposed optical data storage is confirmed by the 24 h long heat treatment at 700°C, which could not damage the recorded data.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3-bit writing of information in nanoporous glass by a single sub-microsecond burst of femtosecond pulses

S. S. Fedotov, A. G. Okhrimchuk, A. S. Lipatiev, A. A. Stepko, K. I. Piyanzina, G. Yu. Shakhgildyan, M. Yu. Presniakov, I. S. Glebov, S. V. Lotarev, and V. N. Sigaev
Opt. Lett. 43(4) 851-854 (2018)

Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing

Jing Cao, Bertrand Poumellec, François Brisset, and Matthieu Lancry
Opt. Express 26(6) 7460-7474 (2018)

Towards rewritable multilevel optical data storage in single nanocrystals

Nicolas Riesen, Xuanzhao Pan, Kate Badek, Yinlan Ruan, Tanya M. Monro, Jiangbo Zhao, Heike Ebendorff-Heidepriem, and Hans Riesen
Opt. Express 26(9) 12266-12276 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription