Abstract

We present an architecture for a multipass amplifier based on a succession of optical Fourier transforms and short propagations that shows a superior stability for variations of the thermal lens compared to state-of-the-art 4f-based amplifiers. We found that the proposed multipass amplifier is robust to variations of the active medium dioptric power. The superiority of the proposed architecture is demonstrated by analyzing the variations of the size and divergence of the output beam in the form of a Taylor expansion around the design value for variations of the thermal lens in the active medium. The dependence of the output beam divergence and size is investigated also for variations of the number of passes, for aperture effects in the active medium, and as a function of the size of the beam on the active medium. This architecture makes efficient use of the transverse beam filtering inherent in the active medium to deliver a beam with excellent quality (TEM00).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared ZGP OPO with divergence compensation and high beam quality

Martin Schellhorn, Gerhard Spindler, and Marc Eichhorn
Opt. Express 26(2) 1402-1410 (2018)

Passive alignment stability and auto-alignment of multipass amplifiers based on Fourier transforms

Karsten Schuhmann, Klaus Kirch, Andreas Knecht, Miroslaw Marszalek, Francois Nez, Jonas Nuber, Randolf Pohl, Ivo Schulthess, Laura Sinkunaite, Manuel Zeyen, and Aldo Antognini
Appl. Opt. 58(11) 2904-2912 (2019)

Corrected Laser Beam Expander

Rubin Gelles
Appl. Opt. 7(2) 375-375 (1968)

References

  • View by:
  • |
  • |
  • |

  1. S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
    [Crossref]
  2. J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
    [Crossref]
  3. J. Körner, J. Hein, and M. C. Kaluza, “Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers,” Appl. Sci. 6, 353 (2016).
    [Crossref]
  4. R. Jung, J. Tümmler, and I. Will, “Topic 1: High average power disk laser,” 2016, https://www.mbi-berlin.de/de/research/projects/1.2/topics/1_power_disk_laser/ .
  5. M. Siebold, “PENELOPE, Helmholtz-Zentrum Dresden-Rossendorf e. V,” 2016, https://www.hzdr.de/db/Cms?pNid=2098 .
  6. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
    [Crossref]
  7. F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.
  8. M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
    [Crossref]
  9. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [Crossref]
  10. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
    [Crossref]
  11. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
    [Crossref]
  12. R. Peters, “Ytterbium-doped sesquioxides as highly efficient laser materials,” Ph.D. thesis (Department Physik der Universität Hamburg, 2009).
  13. V. Chvykov, H. Cao, R. Nagymihaly, M. P. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnuerer, and K. Osvay, “High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping,” Opt. Lett. 41, 3017–3020 (2016).
    [Crossref]
  14. A. Vaupel, N. Bodnar, B. Webb, L. Shah, M. Hemmer, E. Cormier, and M. Richardson, “Hybrid master oscillator power amplifier system providing 10  mJ, 32  W, and 50  MW pulses for optical parametric chirped-pulse amplification pumping,” J. Opt. Soc. Am. B 30, 3278–3283 (2013).
    [Crossref]
  15. J. T. Hunt, J. A. Glaze, W. W. Simmons, and P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt. 17, 2053–2057 (1978).
    [Crossref]
  16. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
    [Crossref]
  17. J. Wojtkiewicz and C. G. Durfee, “High-energy, high-contrast, double-confocal multipass amplifier,” Opt. Express 12, 1383–1388 (2004).
    [Crossref]
  18. E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110  mJ 225  fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
    [Crossref]
  19. H. Plaessmann, S. A. Ré, J. J. Aionis, D. L. Vecht, and W. M. Grossman, “Multipass diode-pumped solid-state optical amplifier,” Opt. Lett. 18, 1420–1422 (1993).
    [Crossref]
  20. P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).
  21. H. Plaessmann, W. Grossman, and T. Olson, “Multi-pass light amplifier,” U.S. patent08079640 (18November1992).
  22. S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” U.S. patent10208664 (5February2000).
  23. A. M. Scott, G. Cook, and A. P. G. Davies, “Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry,” Appl. Opt. 40, 2461–2467 (2001).
    [Crossref]
  24. D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36, 3816–3818 (2011).
    [Crossref]
  25. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10  J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37, 2175–2177 (2012).
    [Crossref]
  26. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9  microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
    [Crossref]
  27. L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
    [Crossref]
  28. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9, 2548–2553 (1970).
    [Crossref]
  29. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [Crossref]
  30. K. Schuhmann, “The thin-disk laser for the 2S–2P measurement in muonic helium,” Ph.D. thesis (Institute for Particle Physics and Astrophysics, ETH Zürich, 2017).
  31. A. Siegman, Lasers (University Science Books, 1986).
  32. J. M. Eggleston, G. Giuliani, and R. L. Byer, “Radial intensity filters using radial birefringent elements,” J. Opt. Soc. Am. 71, 1264–1272 (1981).
    [Crossref]
  33. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4, 1562–1569 (1965).
    [Crossref]
  34. M. S. Bowers, “Diffractive analysis of unstable optical resonators with super-Gaussian mirrors,” Opt. Lett. 17, 1319–1321 (1992).
    [Crossref]
  35. L. C. Andrews and W. B. Miller, “Single-pass and double-pass propagation through complex paraxial optical systems,” J. Opt. Soc. Am. A 12, 137–150 (1995).
    [Crossref]
  36. V. L. Kalashnikov, I. G. Poloyko, V. P. Mikhailov, and D. von der Linde, “Regular, quasi-periodic, and chaotic behavior in continuous-wave solid-state Kerr-lens mode-locked lasers,” J. Opt. Soc. Am. B 14, 2691–2695 (1997).
    [Crossref]
  37. M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
    [Crossref]
  38. F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
    [Crossref]
  39. J. Neuhaus, “Passively mode-locked yb:yag thin-disk laser with active multipass geometry,” Ph.D. thesis (Universität Konstanz, 2009).
  40. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, and R. W. Falcone, “Multiterawatt, 100-fs laser,” Opt. Lett. 16, 1406–1408 (1991).
    [Crossref]
  41. P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
    [Crossref]
  42. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. De Vido, J. M. Smith, T. J. Butcher, C. Hernandez-Gomez, R. J. S. Greenhalgh, and J. L. Collier, “DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser,” Opt. Express 23, 19542–19551 (2015).
    [Crossref]
  43. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30  fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20, 10807–10815 (2012).
    [Crossref]
  44. K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
    [Crossref]
  45. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [Crossref]
  46. A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
    [Crossref]
  47. K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
    [Crossref]
  48. K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
    [Crossref]
  49. Electro-Optics Technology, Inc., “Pavos ultra series,” 2018, http://www.eotech.com/content/userfiles/Pavos%20Ultra-Rotators%20and%20Isolators.pdf .
  50. IPG Photonics Corporation, “High power CW fiber lasers,” https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers .
  51. V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278, 8–13 (2007).
    [Crossref]

2017 (1)

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

2016 (5)

P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
[Crossref]

J. Körner, J. Hein, and M. C. Kaluza, “Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers,” Appl. Sci. 6, 353 (2016).
[Crossref]

V. Chvykov, H. Cao, R. Nagymihaly, M. P. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnuerer, and K. Osvay, “High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping,” Opt. Lett. 41, 3017–3020 (2016).
[Crossref]

E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110  mJ 225  fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
[Crossref]

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

2015 (3)

2014 (1)

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (2)

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36, 3816–3818 (2011).
[Crossref]

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

2009 (1)

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

2008 (1)

2007 (1)

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278, 8–13 (2007).
[Crossref]

2004 (1)

2002 (1)

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

2001 (1)

2000 (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

1998 (1)

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

1997 (1)

1995 (2)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

1993 (1)

1992 (1)

1991 (2)

1986 (1)

1981 (1)

1978 (1)

1970 (1)

1968 (1)

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

1966 (1)

1965 (1)

Ahmed, M. A.

Aionis, J. J.

Almási, G.

Amaro, F. D.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Andrews, L. C.

Andriukaitis, G.

Antognini, A.

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Baltuška, A.

Banerjee, S.

Bauer, D.

Bigot, E. L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Biraben, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Blair, R. J.

Bödefeld, R.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Bodnar, N.

Bowers, M. S.

Brauch, U.

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Browning, D. F.

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

Brun, A.

Butcher, T. J.

Butze, F.

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.

Byer, R. L.

Camy, P.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

Cao, H.

Chambaret, J.

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Chériaux, G.

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Chvykov, V.

Collier, J. L.

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Cook, G.

Copenhaver, R. M.

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

Cormier, E.

Crane, J. K.

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

Davies, A. P. G.

Dax, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

De Vido, M.

Dekorsy, T.

Doualan, J.-L.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

Druon, F.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36, 3816–3818 (2011).
[Crossref]

Durfee, C. G.

Eggleston, J. M.

Ehrentraut, L.

Erhard, S.

S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” U.S. patent10208664 (5February2000).

Ertel, K.

Estable, F.

Falcone, R. W.

Ferré, S.

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Foster, J. D.

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

Foundos, G.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

Friebel, F.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

Fülöp, J. A.

Georges, P.

Giesen, A.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.

S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” U.S. patent10208664 (5February2000).

Giuliani, G.

Glassock, R.

Glaze, J. A.

Gordon, S.

Graf, T.

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Grangier, P.

Greenhalgh, R. J. S.

Grossman, W.

H. Plaessmann, W. Grossman, and T. Olson, “Multi-pass light amplifier,” U.S. patent08079640 (18November1992).

Grossman, W. M.

Guina, M.

Hackel, L. A.

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

Hamster, H.

Hänsch, T. W.

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Hein, J.

J. Körner, J. Hein, and M. C. Kaluza, “Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers,” Appl. Sci. 6, 353 (2016).
[Crossref]

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Hellwing, M.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Hemmer, M.

Hernandez-Gomez, C.

Hornung, M.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Hugel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Hunt, J. T.

Indelicato, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Jeong, T. M.

Julien, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Kahle, M.

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Kaksis, E.

Kalashnikov, M. P.

Kalashnikov, V. L.

Kaluza, M.

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Kaluza, M. C.

J. Körner, J. Hein, and M. C. Kaluza, “Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers,” Appl. Sci. 6, 353 (2016).
[Crossref]

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Kao, C. Y.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Kapteyn, H. C.

Karszewski, M.

Keppler, S.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Kessler, A.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Khazanov, E.

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278, 8–13 (2007).
[Crossref]

Khodakovskiy, N.

Killi, A.

Kimmel, M.

P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
[Crossref]

Kirch, K.

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

Kleinbauer, J.

Knowles, P. E.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Koechner, W.

Kogelnik, H.

Körner, J.

J. Körner, J. Hein, and M. C. Kaluza, “Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers,” Appl. Sci. 6, 353 (2016).
[Crossref]

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Kottmann, F.

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Kumkar, M.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.

Lee, J.

Lee, S. K.

Li, T.

Liebetrau, H.

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Liu, Y. W.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Loescher, A.

Loeser, M.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10  J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37, 2175–2177 (2012).
[Crossref]

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Ludhova, L.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Lundquist, P.

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

Magni, V.

Martin, H.

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

Martinez, M. D.

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

Mason, P. D.

McCahon, S.

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

Mikhailov, V. P.

Miller, W. B.

Moncorgé, R.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

Moschuring, N.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Mulhauser, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Nagymihaly, R.

Nathel, H.

Nebel, T.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Negel, J.-P.

Neuhaus, J.

Nez, F.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Notebaert, L.

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Olson, T.

H. Plaessmann, W. Grossman, and T. Olson, “Multi-pass light amplifier,” U.S. patent08079640 (18November1992).

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Osterink, L. M.

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

Osvay, K.

Palashov, O.

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278, 8–13 (2007).
[Crossref]

Papadopoulos, D. N.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36, 3816–3818 (2011).
[Crossref]

Payne, A.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

Pellegrina, A.

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36, 3816–3818 (2011).
[Crossref]

Penko, F. A.

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

Peters, R.

R. Peters, “Ytterbium-doped sesquioxides as highly efficient laser materials,” Ph.D. thesis (Department Physik der Universität Hamburg, 2009).

Phillips, P. J.

Pittman, M.

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Plaessmann, H.

Pohl, R.

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Poizat, J. P.

Poloyko, I. G.

Porter, J. L.

P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
[Crossref]

Pugžlys, A.

Rabinowitz, P.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Rambo, P.

P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
[Crossref]

Ramirez, L. P.

Ré, S. A.

Renard, P. A.

Richardson, M.

Rogers, E.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

Rousseau, J.

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

Salin, F.

Sarkisyan, S.

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

Sävert, A.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Schlichting, W.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

Schnuerer, M.

Schorcht, F.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Schuhmann, K.

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.

K. Schuhmann, “The thin-disk laser for the 2S–2P measurement in muonic helium,” Ph.D. thesis (Institute for Particle Physics and Astrophysics, ETH Zürich, 2017).

Schwarz, J.

P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
[Crossref]

Schwob, C.

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Scott, A. M.

Shah, L.

Siebold, M.

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10  J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37, 2175–2177 (2012).
[Crossref]

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Simmons, W. W.

Smith, J. M.

Stevens, K. T.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” U.S. patent10208664 (5February2000).

Stolzenburg, C.

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.

Sullivan, A.

Sung, J. H.

Sutter, D.

Sutter, D. H.

Taqqu, D.

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

Vaupel, A.

Vecht, D. L.

von der Linde, D.

Voss, A.

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
[Crossref]

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Wandt, C.

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

Webb, B.

Weichelt, B.

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

Weiler, S.

White, W.

Wilson, E. A.

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Wojtkiewicz, J.

Yoon, J. W.

Yu, T. J.

Zelenogorsky, V.

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278, 8–13 (2007).
[Crossref]

Zhang, J.

Appl. Opt. (6)

Appl. Phys. B (3)

M. Pittman, S. Ferré, J. Rousseau, L. Notebaert, J. Chambaret, and G. Chériaux, “Design and characterization of a near-diffraction-limited femtosecond 100-TW 10-Hz high-intensity laser system,” Appl. Phys. B 74, 529–535 (2002).
[Crossref]

F. Friebel, A. Pellegrina, D. N. Papadopoulos, P. Camy, J.-L. Doualan, R. Moncorgé, P. Georges, and F. Druon, “Diode-pumped Yb: CaF2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation,” Appl. Phys. B 117, 597–603 (2014).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Appl. Phys. Lett. (1)

L. M. Osterink and J. D. Foster, “Thermal effects and transverse mode control in a Nd:YAG laser,” Appl. Phys. Lett. 12, 128–131 (1968).
[Crossref]

Appl. Sci. (1)

J. Körner, J. Hein, and M. C. Kaluza, “Compact aberration-free relay-imaging multi-pass layouts for high-energy laser amplifiers,” Appl. Sci. 6, 353 (2016).
[Crossref]

High Power Laser Sci. Eng. (1)

P. Rambo, J. Schwarz, M. Kimmel, and J. L. Porter, “Development of high damage threshold laser-machined apodizers and gain filters for laser applications,” High Power Laser Sci. Eng. 4e32 (2016).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Antognini, K. Schuhmann, F. D. Amaro, F. Biraben, A. Dax, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. E. Knowles, F. Kottmann, E. L. Bigot, Y. W. Liu, L. Ludhova, N. Moschuring, F. Mulhauser, T. Nebel, F. Nez, P. Rabinowitz, C. Schwob, D. Taqqu, and R. Pohl, “Thin-disk Yb:YAG oscillator-amplifier laser, ASE, and effective Yb:YAG lifetime,” IEEE J. Quantum Electron. 45, 993–1005 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Laser Technik J. (1)

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising materials for high power laser isolators,” Laser Technik J. 13, 18–21 (2016).
[Crossref]

Opt. Commun. (1)

V. Zelenogorsky, O. Palashov, and E. Khazanov, “Adaptive compensation of thermally induced phase aberrations in Faraday isolators by means of a DKDP crystal,” Opt. Commun. 278, 8–13 (2007).
[Crossref]

Opt. Express (6)

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. De Vido, J. M. Smith, T. J. Butcher, C. Hernandez-Gomez, R. J. S. Greenhalgh, and J. L. Collier, “DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser,” Opt. Express 23, 19542–19551 (2015).
[Crossref]

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30  fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20, 10807–10815 (2012).
[Crossref]

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9  microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
[Crossref]

J. Wojtkiewicz and C. G. Durfee, “High-energy, high-contrast, double-confocal multipass amplifier,” Opt. Express 12, 1383–1388 (2004).
[Crossref]

E. Kaksis, G. Almási, J. A. Fülöp, A. Pugžlys, A. Baltuška, and G. Andriukaitis, “110  mJ 225  fs cryogenically cooled Yb:CaF2 multipass amplifier,” Opt. Express 24, 28915–28922 (2016).
[Crossref]

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4  kW (4.7  mJ, 1030  nm) average power converted to 820  W at 515  nm and 234  W at 343  nm,” Opt. Express 23, 21064–21077 (2015).
[Crossref]

Opt. Lett. (8)

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053  nm,” Opt. Lett. 20, 713–715 (1995).
[Crossref]

H. Plaessmann, S. A. Ré, J. J. Aionis, D. L. Vecht, and W. M. Grossman, “Multipass diode-pumped solid-state optical amplifier,” Opt. Lett. 18, 1420–1422 (1993).
[Crossref]

V. Chvykov, H. Cao, R. Nagymihaly, M. P. Kalashnikov, N. Khodakovskiy, R. Glassock, L. Ehrentraut, M. Schnuerer, and K. Osvay, “High peak and average power Ti:sapphire thin disk amplifier with extraction during pumping,” Opt. Lett. 41, 3017–3020 (2016).
[Crossref]

M. S. Bowers, “Diffractive analysis of unstable optical resonators with super-Gaussian mirrors,” Opt. Lett. 17, 1319–1321 (1992).
[Crossref]

D. N. Papadopoulos, A. Pellegrina, L. P. Ramirez, P. Georges, and F. Druon, “Broadband high-energy diode-pumped Yb:KYW multipass amplifier,” Opt. Lett. 36, 3816–3818 (2011).
[Crossref]

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10  J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37, 2175–2177 (2012).
[Crossref]

P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, and A. Brun, “High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser,” Opt. Lett. 16, 144–146 (1991).
[Crossref]

A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, and R. W. Falcone, “Multiterawatt, 100-fs laser,” Opt. Lett. 16, 1406–1408 (1991).
[Crossref]

Proc. SPIE (5)

K. Schuhmann, K. Kirch, and A. Antognini, “Multi-pass resonator design for energy scaling of mode-locked thin-disk lasers,” Proc. SPIE 10082, 100820J (2017).
[Crossref]

K. Schuhmann, M. A. Ahmed, A. Antognini, T. Graf, T. W. Hänsch, K. Kirch, F. Kottmann, R. Pohl, D. Taqqu, A. Voss, and B. Weichelt, “Thin-disk laser multi-pass amplifier,” Proc. SPIE 9342, 93420U (2015).
[Crossref]

M. D. Martinez, J. K. Crane, L. A. Hackel, F. A. Penko, and D. F. Browning, “Optimized diode-pumped Nd:glass prototype regenerative amplifier for the national ignition facility (NIF),” Proc. SPIE 3267, 234–242 (1998).
[Crossref]

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza, “Multipass amplifiers of POLARIS,” Proc. SPIE 8780, 87800I (2013).
[Crossref]

J. Körner, J. Hein, M. Kahle, H. Liebetrau, M. Kaluza, M. Siebold, and M. Loeser, “High-efficiency cyrogenic-cooled diode-pumped amplifier with relay imaging for nanosecond pulses,” Proc. SPIE 8080, 80800D (2011).
[Crossref]

Other (12)

R. Jung, J. Tümmler, and I. Will, “Topic 1: High average power disk laser,” 2016, https://www.mbi-berlin.de/de/research/projects/1.2/topics/1_power_disk_laser/ .

M. Siebold, “PENELOPE, Helmholtz-Zentrum Dresden-Rossendorf e. V,” 2016, https://www.hzdr.de/db/Cms?pNid=2098 .

F. Butze, M. Larionov, K. Schuhmann, C. Stolzenburg, and A. Giesen, “Nanosecond pulsed thin disk Yb:YAG lasers,” in Advanced Solid-State Photonics (TOPS) (2004), p. 237.

R. Peters, “Ytterbium-doped sesquioxides as highly efficient laser materials,” Ph.D. thesis (Department Physik der Universität Hamburg, 2009).

P. Lundquist, S. Sarkisyan, E. A. Wilson, R. M. Copenhaver, H. Martin, and S. McCahon, “Off axis walk off multi-pass amplifiers,” U.S. patent12954387 (24November2010).

H. Plaessmann, W. Grossman, and T. Olson, “Multi-pass light amplifier,” U.S. patent08079640 (18November1992).

S. Erhard, A. Giesen, and C. Stewen, “Laser amplifier system,” U.S. patent10208664 (5February2000).

K. Schuhmann, “The thin-disk laser for the 2S–2P measurement in muonic helium,” Ph.D. thesis (Institute for Particle Physics and Astrophysics, ETH Zürich, 2017).

A. Siegman, Lasers (University Science Books, 1986).

J. Neuhaus, “Passively mode-locked yb:yag thin-disk laser with active multipass geometry,” Ph.D. thesis (Universität Konstanz, 2009).

Electro-Optics Technology, Inc., “Pavos ultra series,” 2018, http://www.eotech.com/content/userfiles/Pavos%20Ultra-Rotators%20and%20Isolators.pdf .

IPG Photonics Corporation, “High power CW fiber lasers,” https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Scheme of the laser beam propagation from active medium to active medium through a 4 f -imaging segment. The 4 f -segment is given by a free propagation of distance f , a focusing optics with focal length f , a free propagation with length 2 f , a second focusing element with focal length f , and a free propagation of length f . The vertical magenta lines represent the position of the active medium; the vertical black lines indicate the position of the optic with focal length f. The black curves represent the beam size evolution along the optical axis z . (b) 6-pass amplifier and corresponding beam size evolution along the propagation axis realized by concatenating five 4 f -imaging stages and assuming a Gaussian aperture at the active medium of W = 4 w in . The black curves show the beam size evolution for an active medium dioptric power having the design value, i.e., V = 0 . The red and blue curves show the propagations (beam size evolution) for V = ± 1 40 f . The gray curves represent the beam evolution for V = 0 and W = . The discontinuity of the waist size at the gain medium is caused by the (Gaussian) aperture effect of the finite pump region.
Fig. 2.
Fig. 2. Schemes showing the transition from a 2-pass amplifier based on 4 f -imaging with mode cleaning achieved with a pinhole in part (a), to a 4-pass amplifier based on a double optical Fourier transform with mode filtering achieved through the soft apertures of the pumped active medium in part (b). The optical Fourier transform is realized by the sequence: free propagation of length F , focusing element with focal length F , followed by a free propagation of length F . The same notation as in Fig. 1 is used.
Fig. 3.
Fig. 3. Scheme and corresponding beam size evolution along the optical axis z for a 2-pass amplifier based on 4 f -imaging in part (a) and on an optical Fourier transform in part (b). It was assumed that W = 4 w in , and the same notation as in Fig. 1 is used. Similar to Fig. 1(b), the Gaussian aperture related to the finite pump region causes the discontinuity of the beam size at the gain medium.
Fig. 4.
Fig. 4. Size w out , 2 and phase front curvature R out , 2 1 of the output beam leaving the 2-pass amplifiers of Fig. 3 for variations of the active medium dioptric power Δ V . The top row assumes W = 4 w in , and in the bottom one W = . The blue curves represent the results for the Fourier-based amplifier of Fig. 3(b), while the dashed red curves represent the results for the 4 f -based amplifier of Fig. 3(a). In both cases it was assumed that q in = q stable . For comparison, in gray are given w stable ( Δ V ) and R stable 1 ( Δ V ) corresponding to the complex beam parameter given in Eq. (15).
Fig. 5.
Fig. 5. Two types of 4-pass amplifiers both based on two optical Fourier transforms. In (a), there is physically short free propagation between the second and third pass. In (b),  4 f -imaging is used to obtain propagation with zero effective length between the second and third pass. The same notation as in Fig. 1 is used. The gray-shaded region indicates the 4 f -imaging segment. The discontinuity of the beam size due to the aperture at the active medium is visible.
Fig. 6.
Fig. 6. Similar to Fig. 4, but for amplifiers with four passes. The blue curves represent the output beam characteristics of both layouts of Fig. 5. The red dashed curves represent the output characteristics of the 4 f -amplifier design.
Fig. 7.
Fig. 7. 8-pass amplifier realized by concatenating two 4-pass amplifiers of Fig. 5(a). The same notation as in Fig. 1 has been used.
Fig. 8.
Fig. 8. Similar to Fig. 4, but for an 8-pass amplifier as given in Figs. 7 and 11. The black dashed lines represent the maximally allowed deviations for vanishing aperture effects given by Eqs. (25) and (26).
Fig. 9.
Fig. 9. Similar to Fig. 8, but for a 16-pass amplifier.
Fig. 10.
Fig. 10. (a) Scheme of the optical Fourier transform from active medium to active medium obtained using two Galilean telescopes. The active medium itself (vertical lines at z = 0 and z = 1 ) acts as the focusing element of the telescopes with focal length f AM . The defocusing elements (cyan vertical lines) of the telescopes have focal length f given by Eq. (36) and are placed at a distance 0.25 L from the active medium, where L is the distance between the two passes in the active medium. The beam size ( w ) evolution in the Fourier transform segment is given for three different values of the active medium focal length: f AM = L (solid), f AM = 0.5 L (dashed), and f AM = 0.3 L (dotted). (b) Effective focal length F of the Fourier transform as a function of the active medium focal length f AM expressed in units of L .
Fig. 11.
Fig. 11. (a) Scheme of an 8-pass Fourier-based amplifier obtained by concatenating two 4-pass amplifiers of Fig. 5(a). Each Fourier transform has been shortened using two Galilean telescopes. The active medium is also part of the Galilean telescope. Between two Fourier transforms, there is a short propagation of length L . (b) Similar to (a), but in this case the 8-pass amplifier is based on Fig. 5(b). Between each Fourier transform there is a 4 f -imaging (indicated by the gray shaded area). The same notation as in Fig. 1 is used.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

w out 2 = w in 2 + W 2 ,
M aperture = [ 1 0 i λ π W 2 1 ] ,
M AM = [ 1 0 V 1 ] · [ 1 0 i λ π W 2 1 ] = [ 1 0 V i λ π W 2 1 ] ,
V ˜ = V + i λ π W 2 .
V = V unpumped + V thermal = V unpumped + V thermal avg + Δ V ,
AM 4 f AM 4 f AM 4 f AM 4 f AM .
1 q = 1 R i λ π w 2 ,
q out = A q in + B C q in + D .
M 4 f , N = [ ( 1 ) N 1 0 ( 1 ) N · N · Δ V ˜ ( 1 ) N 1 ] .
q out , N = q in + N q in 2 Δ V ˜ + N 2 q in 3 Δ V ˜ 2 + N 3 q in 4 Δ V ˜ 3 + .
w out , N = w in ,
R out , N 1 = N Δ V .
w out , N w in = 1 w in 2 N 2 W 2 + 3 w in 4 N 2 8 W 4 5 w in 6 N 3 16 W 6 + .
M Fourier , 2 = M AM · M Fourier · M AM
= [ F · Δ V ˜ F F 2 · Δ V ˜ 2 + 1 F F · Δ V ˜ ] ,
q stable = i F 1 ( F · Δ V ˜ ) 2 .
q in = i F .
w in = λ F π .
q out , 2 = i F + i F 3 Δ V ˜ 2 F 4 Δ V ˜ 3 F 6 Δ V ˜ 5 +
w out , 2 w in = 1 + 1 2 F 2 Δ V 2 1 8 F 4 Δ V 4 + ,
R out , 2 1 = F 2 Δ V 3 + F 4 Δ V 5 F 6 Δ V 7 + F 8 Δ V 9 +
w out , 2 w in = 1 + w in 4 2 W 4 w in 8 8 W 8 + w in 12 16 W 12 + .
AM Fourier AM AM Fourier AM ,
AM Fourier AM 4 f AM Fourier AM .
q out , 4 = i F + 2 F 4 Δ V ˜ 3 4 i F 5 Δ V ˜ 4 4 F 6 Δ V ˜ 5 + .
w out , 4 w in = 1 + 2 F 4 Δ V 4 2 F 8 Δ V 8 + ,
R out , 4 1 = 2 F 2 Δ V 3 4 F 4 Δ V 5 8 F 6 Δ V 7 + .
w in < w out , N ( Δ V ) < w stable 2 ( Δ V ) / w in ,
F 2 Δ V 2 < R out , N 1 ( Δ V ) < F 2 Δ V 2 ,
q out , 8 = i F + 4 F 4 Δ V ˜ 3 + 16 i F 5 Δ V ˜ 4 40 F 6 Δ V ˜ 5 + ,
q out , 32 = i F + 16 F 4 Δ V ˜ 3 + 256 i F 5 Δ V ˜ 4 2720 F 6 Δ V ˜ 5 .
w out , 8 w in = 1 + 8 F 4 Δ V 4 32 F 6 Δ V 6 + ,
w out , 32 w in = 1 + 128 F 4 Δ V 4 10752 F 6 Δ V 6 + ,
R out , 8 1 = 4 F 2 Δ V 3 40 F 4 Δ V 5 + 32 F 6 Δ V 7 + ,
R out , 32 1 = 16 F 2 Δ V 3 2720 F 4 Δ V 5 + 132992 F 6 Δ V 7 .
w out , 8 w in = 1 2 w in 6 W 6 + 8 w in 8 W 8 + ,
w out , 32 w in = 1 8 w in 6 W 6 + 128 w in 8 W 8 + ,
F = π w in 2 λ .
f = 1 2 ( 4 f AM + L ) L 3 L 8 f AM + L 2 8 L f AM + 32 f AM 2 .
F = f AM 32 ( f AM / L ) 2 8 f AM / L + 1 + 4 f AM / L ( 4 f AM / L 1 ) 2 .
AM Fourier AM L AM Fourier AM L ,
AM Fourier AM 4 f AM Fourier AM 4 f ,

Metrics