Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Particle profiling and classification by a dual-band continuous-wave lidar system

Not Accessible

Your library or personal account may give you access

Abstract

A dual-band continuous-wave (CW) light detection and ranging (lidar) system has been developed for particle classification. In this lidar system, the range-resolved atmospheric backscattering signal is recorded by an optical imaging system satisfying the Scheimpflug principle instead of the conventional time-of-flight approach. It is thus possible to employ low-cost and compact CW diode lasers, facilitating the development of a robust multiple-wavelength atmospheric lidar system that can attain high accuracy of the retrieved parameters of atmospheric particles. The present work demonstrates a dual-band Scheimpflug lidar system employing two diode lasers at 405 nm (0.5 W) and 808 nm (3.2 W). Exposures are milliseconds apart and interpolated. Measurements of various types of particles and smoke have been performed to verify the feasibility of using the present system for improved particle classification and sizing, for the situation when plumes were dilute and no significant opacity was detected.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols

Zheng Kong, Teng Ma, Ke Chen, Zhenfeng Gong, and Liang Mei
Appl. Opt. 58(31) 8612-8621 (2019)

Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies

Liang Mei, Zheng Kong, and Peng Guan
Opt. Express 26(6) A260-A274 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.