Abstract

In this paper, we present, to the best of our knowledge, the first low-loss vacuum-compatible thermally controlled Faraday isolator able to retain a good isolation factor under high-vacuum working conditions. The throughput that can be obtained with the developed device is as high as 99%, retaining an isolation factor higher than 40 dB. That very high isolation ratio can be kept over long time periods independently from external temperature conditions with a few Celsius degrees of variation due to thermal active control. The mechanical and optical configuration is detailed, and the performances achieved with this device are presented.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-vacuum Faraday isolation remote tuning

The Virgo Collaboration
Appl. Opt. 49(25) 4780-4790 (2010)

High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers

Oleg V. Palashov, Dmitry S. Zheleznov, Alexander V. Voitovich, Victor V. Zelenogorsky, Eugene E. Kamenetsky, Efim A. Khazanov, Rodica M. Martin, Katherine L. Dooley, Luke Williams, Antonio Lucianetti, Volker Quetschke, Guido Mueller, David H. Reitze, David B. Tanner, Eric Genin, Benjamin Canuel, and Julien Marque
J. Opt. Soc. Am. B 29(7) 1784-1792 (2012)

Broadband Faraday isolator

Michał Berent, Andon A. Rangelov, and Nikolay V. Vitanov
J. Opt. Soc. Am. A 30(1) 149-153 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription