Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Vacuum-compatible low-loss Faraday isolator for efficient squeezed-light injection in laser-interferometer-based gravitational-wave detectors

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present, to the best of our knowledge, the first low-loss vacuum-compatible thermally controlled Faraday isolator able to retain a good isolation factor under high-vacuum working conditions. The throughput that can be obtained with the developed device is as high as 99%, retaining an isolation factor higher than 40 dB. That very high isolation ratio can be kept over long time periods independently from external temperature conditions with a few Celsius degrees of variation due to thermal active control. The mechanical and optical configuration is detailed, and the performances achieved with this device are presented.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers

Oleg V. Palashov, Dmitry S. Zheleznov, Alexander V. Voitovich, Victor V. Zelenogorsky, Eugene E. Kamenetsky, Efim A. Khazanov, Rodica M. Martin, Katherine L. Dooley, Luke Williams, Antonio Lucianetti, Volker Quetschke, Guido Mueller, David H. Reitze, David B. Tanner, Eric Genin, Benjamin Canuel, and Julien Marque
J. Opt. Soc. Am. B 29(7) 1784-1792 (2012)

In-vacuum optical isolation changes by heating in a Faraday isolator

The Virgo Collaboration
Appl. Opt. 47(31) 5853-5861 (2008)

In-vacuum Faraday isolation remote tuning

The Virgo Collaboration
Appl. Opt. 49(25) 4780-4790 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.