Abstract

A negative lens comprising a gas in steady axisymmetric flow is demonstrated experimentally and analyzed. The lens has potential applications in high-intensity laser optics and presents the possibility of adjusting the focusing properties on a submillisecond time scale. It can be operated in environments where conventional optical elements are vulnerable.

Full Article  |  PDF Article

Corrections

D. Kaganovich, L. A. Johnson, D. F. Gordon, A. A. Mamonau, and B. Hafizi, "Lensing properties of rotational gas flow: erratum," Appl. Opt. 58, 368-368 (2019)
http://proxy.osapublishing.org/ao/abstract.cfm?uri=ao-58-2-368

OSA Recommended Articles
Modeling of a compact gas vortex lens for high-power lasers

L. A. Johnson, D. Kaganovich, B. Hafizi, and D. F. Gordon
J. Opt. Soc. Am. B 36(5) 1376-1385 (2019)

Simulation of free-space optical guiding structure based on colliding gas flows

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting
Appl. Opt. 54(31) F144-F148 (2015)

Thermal effects of a laser beam tube consisting of a window and nonflowing gas

Jianzhu An, Youkuan Li, and Xiangwan Du
Opt. Lett. 29(24) 2899-2901 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34, 3374–3376 (1995).
    [Crossref]
  2. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
    [Crossref]
  3. M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
    [Crossref]
  4. M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
    [Crossref]
  5. M. M. Michaelis, M. Notcutt, and P. F. Cunningham, “Drilling by gas lens focused laser,” Opt. Commun. 59, 369–374 (1986).
    [Crossref]
  6. C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).
  7. D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
    [Crossref]
  8. P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
    [Crossref]
  9. D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
    [Crossref]
  10. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 286.
  11. B. Hafizi, J. Peñano, R. Fischer, G. DiComo, and A. Ting, “Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube,” Appl. Opt. 53, 5016–5023 (2014).
    [Crossref]
  12. “High-resolution transmission molecular absorption database (HITRAN),” http://hitran.org/ .
  13. C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
    [Crossref]
  14. C. L. M. Ireland, “Gas breakdown by single, similar 40  ps–50  ns, 1.06  μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
    [Crossref]
  15. Y. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, 1977).
  16. P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
    [Crossref]
  17. J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
    [Crossref]
  18. M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
    [Crossref]
  19. D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
    [Crossref]
  20. R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
    [Crossref]
  21. B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
    [Crossref]
  22. J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
    [Crossref]

2018 (1)

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

2017 (1)

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

2015 (2)

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
[Crossref]

2014 (2)

B. Hafizi, J. Peñano, R. Fischer, G. DiComo, and A. Ting, “Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube,” Appl. Opt. 53, 5016–5023 (2014).
[Crossref]

D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
[Crossref]

2012 (1)

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

2011 (1)

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

2008 (1)

C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).

2005 (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

2003 (1)

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

2002 (2)

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[Crossref]

1995 (1)

1991 (1)

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

1988 (1)

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

1986 (1)

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, “Drilling by gas lens focused laser,” Opt. Commun. 59, 369–374 (1986).
[Crossref]

1975 (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[Crossref]

1974 (1)

C. L. M. Ireland, “Gas breakdown by single, similar 40  ps–50  ns, 1.06  μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
[Crossref]

Bald, K.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Bösser, D.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Cavedon, M.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Cazalet, R. S.

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

Chen, Y.-H.

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Cunningham, P. F.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, “Drilling by gas lens focused laser,” Opt. Commun. 59, 369–374 (1986).
[Crossref]

De Marné, P.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Dempers, C. A.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

DiComo, G.

Dogariu, A.

Eich, T.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Fernsler, R.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

Fischer, R.

Forbes, A.

C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Fuchert, G.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Gordon, D.

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

Gordon, D. F.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
[Crossref]

D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
[Crossref]

Griener, M.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Hafizi, B.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

B. Hafizi, J. Peñano, R. Fischer, G. DiComo, and A. Ting, “Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube,” Appl. Opt. 53, 5016–5023 (2014).
[Crossref]

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[Crossref]

Hagan, D. J.

Helle, M.

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

Helle, M. H.

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
[Crossref]

D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
[Crossref]

Herrmann, A.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Hubbard, R. F.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

Ireland, C. L. M.

C. L. M. Ireland, “Gas breakdown by single, similar 40  ps–50  ns, 1.06  μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
[Crossref]

Johnson, L. A.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

Kaganovich, D.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
[Crossref]

D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
[Crossref]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

Kappatou, A.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Kosch, M.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

Lunt, T.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Mafusire, C.

C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).

Michaelis, M. M.

C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, “Drilling by gas lens focused laser,” Opt. Commun. 59, 369–374 (1986).
[Crossref]

Mohebi, M.

Morgan, C. G.

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[Crossref]

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Notcutt, M.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, “Drilling by gas lens focused laser,” Opt. Commun. 59, 369–374 (1986).
[Crossref]

Palastro, J. P.

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
[Crossref]

Peñano, J.

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

B. Hafizi, J. Peñano, R. Fischer, G. DiComo, and A. Ting, “Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube,” Appl. Opt. 53, 5016–5023 (2014).
[Crossref]

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

Peñano, J. R.

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[Crossref]

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Prause, A.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

Raizer, Y. P.

Y. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, 1977).

Richardson, A. S.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

Rohde, V.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Said, A. A.

Schmitz, O.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Schweer, B.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Scully, M.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 286.

Snedden, G.

C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).

Sochor, M.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Soileau, M. J.

Sprangle, P.

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[Crossref]

Stamm, A. B.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

Stroth, U.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Terra, A.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Ting, A.

D. Kaganovich, J. P. Palastro, Y.-H. Chen, D. F. Gordon, M. H. Helle, and A. Ting, “Simulation of free-space optical guiding structure based on colliding gas flows,” Appl. Opt. 54, F144–F148 (2015).
[Crossref]

B. Hafizi, J. Peñano, R. Fischer, G. DiComo, and A. Ting, “Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube,” Appl. Opt. 53, 5016–5023 (2014).
[Crossref]

D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
[Crossref]

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

Van Stryland, E. W.

Waltham, J. A.

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

Wolfrum, E.

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

Xia, T.

Zhigunov, D.

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

Zigler, A.

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Sprangle, J. Peñano, B. Hafizi, D. Gordon, and M. Scully, “Remotely induced atmospheric lasing,” Appl. Phys. Lett. 98, 211102 (2011).
[Crossref]

J. Appl. Phys. (2)

J. Peñano, P. Sprangle, B. Hafizi, D. Gordon, R. Fernsler, and M. Scully, “Remote lasing in air by recombination and electron impact excitation of molecular nitrogen,” J. Appl. Phys. 111, 033105 (2012).
[Crossref]

D. Kaganovich, D. F. Gordon, M. H. Helle, and A. Ting, “Shaping gas jet plasma density profile by laser generated shock waves,” J. Appl. Phys. 116, 013304 (2014).
[Crossref]

J. Phys. D (1)

C. L. M. Ireland, “Gas breakdown by single, similar 40  ps–50  ns, 1.06  μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
[Crossref]

Nature (1)

M. M. Michaelis, C. A. Dempers, M. Kosch, A. Prause, M. Notcutt, P. F. Cunningham, and J. A. Waltham, “A gas-lens telescope,” Nature 353, 547–548 (1991).
[Crossref]

Opt. Commun. (1)

M. M. Michaelis, M. Notcutt, and P. F. Cunningham, “Drilling by gas lens focused laser,” Opt. Commun. 59, 369–374 (1986).
[Crossref]

Opt. Laser Technol. (1)

M. Notcutt, M. M. Michaelis, P. F. Cunningham, R. S. Cazalet, and J. A. Waltham, “Spinning pipe gas lens,” Opt. Laser Technol. 20, 243–250 (1988).
[Crossref]

Phys. Plasmas (4)

D. F. Gordon, A. B. Stamm, D. Zhigunov, B. Hafizi, L. A. Johnson, D. Kaganovich, R. F. Hubbard, and A. S. Richardson, “Ideal form of optical plasma lenses,” Phys. Plasmas 25, 063101 (2018).
[Crossref]

R. F. Hubbard, B. Hafizi, A. Ting, D. Kaganovich, P. Sprangle, and A. Zigler, “High intensity focusing of laser pulses using a short plasma channel lens,” Phys. Plasmas 9, 1431–1442 (2002).
[Crossref]

B. Hafizi, A. Ting, R. F. Hubbard, P. Sprangle, and J. R. Peñano, “Relativistic effects on intense laser beam propagation in plasma channels,” Phys. Plasmas 10, 1483–1492 (2003).
[Crossref]

J. P. Palastro, D. Gordon, B. Hafizi, L. A. Johnson, J. Peñano, R. F. Hubbard, M. Helle, and D. Kaganovich, “Plasma lenses for ultrashort multi-petawatt laser pulses,” Phys. Plasmas 22, 123101 (2015).
[Crossref]

Phys. Rev. B (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).
[Crossref]

Phys. Rev. E (1)

P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418 (2002).
[Crossref]

Rep. Prog. Phys. (1)

C. G. Morgan, “Laser-induced breakdown of gases,” Rep. Prog. Phys. 38, 621–665 (1975).
[Crossref]

Rev. Sci. Instrum. (1)

M. Griener, O. Schmitz, K. Bald, D. Bösser, M. Cavedon, P. De Marné, T. Eich, G. Fuchert, A. Herrmann, A. Kappatou, T. Lunt, V. Rohde, B. Schweer, M. Sochor, U. Stroth, A. Terra, and E. Wolfrum, and ASDEX Upgrade Team, “Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes,” Rev. Sci. Instrum. 88, 033509 (2017).
[Crossref]

S. Afr. J. Sci. (1)

C. Mafusire, A. Forbes, G. Snedden, and M. M. Michaelis, “The spinning pipe gas lens revisited,” S. Afr. J. Sci. 104, 260–264 (2008).

Other (3)

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2000), p. 286.

Y. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, 1977).

“High-resolution transmission molecular absorption database (HITRAN),” http://hitran.org/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Conceptual design of the rotational flow gas lens. Gas enters the lens via inlet tubes in the horizontal plane. Gas exits the lens in vertical directions through output holes. (b) 3D printed gas director inside the lens body. Quarter dollar is shown for the scale.
Fig. 2.
Fig. 2. (a) Experimental setup and ray tracing for the gas lens focal length measurements. The mask (green rectangle on the left) is imaged onto the CCD image plane through the diverging gas and converging glass lenses. (b) Image of the mask with stationary gas flow (40 PSI inlet pressure) in the lens, (c) image without gas flow for the same optical setup, and (d) sharp image of the mask without gas flow, obtained by adjusting the position of the CCD camera. This image appears 4% larger on the CCD than the image in (b) but with similar sharpness. The sharpness of all images was plotted by taking horizontal outlines integrated over the areas inside the dashed rectangles in (b), (c), and (d) and is shown in (e). The arbitrarily chosen dashed gray line in (e) indicates the intensity level where the images’ sharpness was measured.
Fig. 3.
Fig. 3. (a) Screen-shot of the nitrogen density in rotational flow inside the gas lens. The diameter of the rotational (yellow) disk of gas is 6 mm, and the thickness is 1 mm. The thickness of all walls (not shown) is 0.5 mm. The clear aperture of the lens is 1.75 mm. Gas density inside the filling chambers (partially shown on each side) is 7.8 × 10 19    cm 3 , corresponding to the inlet pressure of about 40 PSI. (b) Gas density profile across the central horizontal slice inside the clear aperture of the lens. Blue points are simulation values; the red line is a parabolic fit of Eq. (1). The right vertical axis is the refractive index change of nitrogen from the standard conditions of 1 atmosphere pressure and 300 K temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n min ( 1 + k g 2 r 2 ) ,
F = 1 n min k g d ,
P threshold = ( w 2 F ) 2 π n 2 N c p T α ( n 2 1 ) τ ,
n p ( r ) = n 0 ( 1 k p 2 r 2 ) ,

Metrics