Abstract

Microbolometers are the dominant technology for uncooled thermal imaging; however, devices based on a direct retardation measurement of a liquid crystal (LC) transducer pixel have been shown to have comparable sensitivity. In this paper, an approach for increasing LC transducer sensitivity utilizing an etalon structure is considered. A detailed design for an LC resonant cavity between dielectric mirrors is proposed and the performance is evaluated numerically. The measured quantity is the transmission of a visible wavelength through the etalon, which requires no thermal contact with the IR sensor. Numerical and analytical calculations that consider a 470 nm thick LC pixel demonstrate that the change in transmitted intensity with temperature is 26 times greater in the device based on a resonant structure than in a device based on a direct retardation measurement. Finally, the paper discusses how the dielectric mirror materials, dimensions of the resonant cavity structure, and expected process tolerances affect the sensitivity of the device.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrowband multispectral liquid crystal tunable filter

Marwan Abuleil and Ibrahim Abdulhalim
Opt. Lett. 41(9) 1957-1960 (2016)

Liquid-crystal variable retarders for aerospace polarimetry applications

R. L. Heredero, N. Uribe-Patarroyo, T. Belenguer, G. Ramos, A. Sánchez, M. Reina, V. Martínez Pillet, and A. Álvarez-Herrero
Appl. Opt. 46(5) 689-698 (2007)

Liquid crystal Lyot tunable filter with extended free spectral range

Ofir Aharon and I. Abdulhalim
Opt. Express 17(14) 11426-11433 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
    [Crossref]
  2. D. Ostrower, “Optical thermal imaging–replacing microbolometer technology and achieving universal deployment,” III-Vs Rev. 19, 24–27 (2006).
    [Crossref]
  3. H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
    [Crossref]
  4. M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
    [Crossref]
  5. S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
    [Crossref]
  6. V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
    [Crossref]
  7. J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
    [Crossref]
  8. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).
  9. I. J. Hodgkinson and Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 2015).
  10. B. Wang, “Two dimensional liquid crystal devices and their computer simulations,” Ph.D. dissertation (Kent State University, 2002), https://www.lcinet.kent.edu/facts/dissertation/index.php .
  11. S. Isaacs, F. Placido, and A. Abdulhalim, “Investigation of liquid crystal Fabry–Perot tunable filters: design, fabrication, and polarization independence,” Appl. Opt. 53, H91–H101 (2014).
    [Crossref]
  12. M. R. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” (1987), http://www.dtic.mil/dtic/tr/fulltext/u2/a192210.pdf .
  13. L. Gao, F. Lemarchard, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012).
    [Crossref]
  14. D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttria,” Appl. Opt. 29, 604–607 (1990).
    [Crossref]
  15. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  16. Perkin Elmer, “Technical specifications for the Lambda 1050 UV/VIS/NIR and Lambda 950 UV/VIS/NIR Spectrophotometers,” http://www.perkinelmer.com .
  17. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. 7, 667–670 (2009).
    [Crossref]

2016 (2)

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

2015 (2)

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

2014 (1)

2012 (1)

2009 (1)

2007 (1)

M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
[Crossref]

2006 (2)

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

D. Ostrower, “Optical thermal imaging–replacing microbolometer technology and achieving universal deployment,” III-Vs Rev. 19, 24–27 (2006).
[Crossref]

2005 (1)

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

1990 (1)

Abdulhalim, A.

Abdulhalim, I.

Berry, S.

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Berry, S. R.

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Bos, P.

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Bos, P. J.

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Bozler, C.

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Bozler, C. O.

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Brugioni, S.

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Bryant, D.

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Bryant, D. R.

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Clark, H.

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Clark, H. R.

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Crastes, A.

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

Faetti, S.

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Fieque, B.

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

Finnemeyer, V.

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Finnemeyer, V. A.

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Gaeta, A. L.

Gao, L.

Heanue, J.

M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
[Crossref]

Hodgkinson, I. J.

I. J. Hodgkinson and Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 2015).

Isaacs, S.

Kometani, T. Y.

Lamont, M. R. E.

Legras, O.

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

Lemarchard, F.

Lequime, M.

Lie, J.

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Lipson, M.

Lu, L.

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Luke, K.

Ma, E.

M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).

McGinty, C.

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

Meucci, R.

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Nash, D. L.

Nassau, K.

Okawachi, Y.

Ostrower, D.

D. Ostrower, “Optical thermal imaging–replacing microbolometer technology and achieving universal deployment,” III-Vs Rev. 19, 24–27 (2006).
[Crossref]

Placido, F.

Querry, M. R.

M. R. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” (1987), http://www.dtic.mil/dtic/tr/fulltext/u2/a192210.pdf .

Reich, R.

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Reich, R. K.

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

Tissot, J. L.

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

Trouilleau, C.

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

Wagner, M.

M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
[Crossref]

Wang, B.

B. Wang, “Two dimensional liquid crystal devices and their computer simulations,” Ph.D. dissertation (Kent State University, 2002), https://www.lcinet.kent.edu/facts/dissertation/index.php .

Wood, D. L.

Wu, Q.

I. J. Hodgkinson and Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 2015).

Wu, S.

M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
[Crossref]

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

Yaroshchuk, O.

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

III-Vs Rev. (1)

D. Ostrower, “Optical thermal imaging–replacing microbolometer technology and achieving universal deployment,” III-Vs Rev. 19, 24–27 (2006).
[Crossref]

J. Appl. Phys. (2)

V. Finnemeyer, D. Bryant, R. Reich, H. Clark, S. Berry, C. Bozler, O. Yaroshchuk, L. Lu, and P. Bos, “Versatile alignment layer method for new types of liquid crystal photonic devices,” J. Appl. Phys. 118, 034501 (2015).
[Crossref]

J. Lie, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[Crossref]

J. Microelectromech. Syst. (1)

S. Berry, C. O. Bozler, R. K. Reich, H. R. Clark, P. Bos, V. Finnemeyer, and C. McGinty, “A scalable fabrication process for liquid crystal-based uncooled thermal imagers,” J. Microelectromech. Syst. 25, 479–488 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

J. L. Tissot, C. Trouilleau, B. Fieque, A. Crastes, and O. Legras, “Uncooled microbolometer detector: recent developments at ULIS,” Opto-Electron. Rev. 14, 25–32 (2006).
[Crossref]

Proc. SPIE (2)

H. R. Clark, C. O. Bozler, S. R. Berry, R. K. Reich, P. J. Bos, V. A. Finnemeyer, D. R. Bryant, and C. McGinty, “Liquid crystal uncooled thermal imager development,” Proc. SPIE 9974, 99740E (2016).
[Crossref]

M. Wagner, E. Ma, J. Heanue, and S. Wu, “Solid state optical thermal imagers,” Proc. SPIE 6542, 65421P (2007).
[Crossref]

Other (5)

H. A. Macleod, Thin-Film Optical Filters (Institute of Physics, 2001).

I. J. Hodgkinson and Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 2015).

B. Wang, “Two dimensional liquid crystal devices and their computer simulations,” Ph.D. dissertation (Kent State University, 2002), https://www.lcinet.kent.edu/facts/dissertation/index.php .

Perkin Elmer, “Technical specifications for the Lambda 1050 UV/VIS/NIR and Lambda 950 UV/VIS/NIR Spectrophotometers,” http://www.perkinelmer.com .

M. R. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” (1987), http://www.dtic.mil/dtic/tr/fulltext/u2/a192210.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Example of device architecture for an uncooled LC thermal imager which utilizes direct retardation measurement of the transducer array.
Fig. 2.
Fig. 2. SEM image of an LC transducer cavity fabricated by Berry et al. A 20    μm × 20    μm LC pixel is thermally isolated from the underlying substrate by four silicon nitride legs.
Fig. 3.
Fig. 3. Materials and thicknesses of layers that compose the LC pixel.
Fig. 4.
Fig. 4. Modeled transmitted intensity for a thermal imager device based on direct measurement of retardation.
Fig. 5.
Fig. 5. Optical transmission through an etalon plotted versus temperature for resonant cavity thicknesses of 470 and 940 nm. The first number in the legend corresponds to the wavelength and the second corresponds to the cavity thickness.
Fig. 6.
Fig. 6. Cartoon depiction of the stack of materials considered for a resonant cavity structure for thermal imaging. In order to achieve high reflectivity at the boundaries, the dielectric mirrors in the device considered are seven layers for the top mirror, and nine layers for the bottom mirror instead of the three-layer structure shown.
Fig. 7.
Fig. 7. Transmission versus wavelength curves for the etalon device depicted in Fig. 6. Two distinct spectral peaks are present corresponding to light polarized such that it encounters the ordinary or extraordinary index. The darker curves correspond to calculations where the absorption of the materials was considered. The lighter curves correspond to calculations where the absorption was not considered.
Fig. 8.
Fig. 8. Transmission versus temperature curves for the etalon device depicted in Fig. 6 when light is polarized such that it encounters n e and n o . The probe wavelength for each measurement is given in parentheses in the legend.
Fig. 9.
Fig. 9. Transmission versus temperature for the etalon device pictured in Fig. 6 when a differential measurement is considered. The sensitivity of the device is enhanced by increasing the thickness of the resonant cavity.
Fig. 10.
Fig. 10. Transmission versus wavelength for the LC resonant cavity at each end of the 200 mK temperature range. The transmission peak is shifted by 0.116 nm for a 200 mK change in temperature.
Fig. 11.
Fig. 11. Transmission versus temperature curve for a 470 nm thick cavity when the dielectric mirrors were designed to be highly reflective at 550 nm. The calculation was performed for light polarized such that it interacts with the extraordinary index of the LC; the wavelength for the calculation was 546.4 nm.
Fig. 12.
Fig. 12. Transmission versus temperature curves for cavities of varying thickness when the top and bottom dielectric mirrors have seven and nine layers, respectively.
Fig. 13.
Fig. 13. Transmission versus temperature curves for cavities of varying thickness when the top and bottom dielectric mirrors have three and five layers, respectively.
Fig. 14.
Fig. 14. Differential transmission measurement versus temperature for varying thickness of the top air gap. The first number in the legend refers to cavity thickness and the second to air gap thickness. The sensitivity is not affected by changing the thickness of the air gap.

Tables (4)

Tables Icon

Table 1. Various Material Layer Properties of LC Pixel Composition

Tables Icon

Table 2. Indices of Refraction and Extinction Coefficients for Materials Chosen for Resonant Cavity Structure in Fig. 4

Tables Icon

Table 3. Summary of Results for %-Change in Transmission for Varying Reflectivity of Dielectric Mirrors and Cavity Thickness

Tables Icon

Table 4. Summary of Calculations Performed When Extraordinary Axis of the LC Material Is Considered

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

τ = C / G ,
C = ρ 1 V 1 c 1 + ρ 2 V 2 c 2 + ρ 3 V 3 c 3 + ,
n e ( T ) = A B T + 2 Δ n o 3 ( 1 T T c ) β ,
n o ( T ) = A B T Δ n o 3 ( 1 T T c ) β ,
I = I o sin 2 ( δ 2 ) ,
δ = 2 π ( Δ n d + ϕ ) λ
d I d Δ n = 2 π d λ Cos [ δ 2 ] Sin [ δ 2 ] .
T = 1 1 + F sin 2 ( σ ) ,
σ = 2 π n ( d λ ) .
F = 4 R s ( 1 R s ) 2 ,
d T d n = 4 π F d Cos [ σ ] Sin [ σ ] λ ( 1 + F Sin 2 [ σ ] ) 2 .
σ = 2 π ( n l c d l c + n air d air ) λ .

Metrics