Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-sensitivity fiber optic hydrogen sensor in air by optimizing a self-referenced demodulating method

Not Accessible

Your library or personal account may give you access

Abstract

Self-referenced demodulating methods of fiber optic hydrogen sensors based on WO3Pd2PtPt composite film are studied in this paper. By employing the proper baseline intensity as sensing parameters, fluctuations of the sensing signal of the hydrogen sensor can be obviously depressed, and sensitivity can be greatly improved. Experimental results show that the resolution of the hydrogen sensor can reach 3 parts per million (ppm) when the hydrogen concentration is lower than 1000 ppm. Additionally, the hydrogen sensor shows better sensitivity toward lower concentrations of hydrogen, enabling a hydrogen threshold down to 10 ppm in air at room temperature. To the best of our knowledge, this is the lowest threshold reported for an optical hydrogen sensor operated at room temperature in air. Moreover, the sensor has good repeatability during hydrogen response. This work proposes a simple and novel method to improve the performance of fiber optic hydrogen sensors, which can greatly promote their potential application in various fields.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film

Jixiang Dai, Wen Peng, Gaopeng Wang, Feng Xiang, Yuhuan Qin, Min Wang, Yutang Dai, Minghong Yang, Hui Deng, and Pengcheng Zhang
Opt. Express 25(3) 2009-2015 (2017)

Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration

Shuijing Tang, Bo Zhang, Zhi Li, Jixiang Dai, Gaopeng Wang, and Minghong Yang
Opt. Express 23(17) 22826-22835 (2015)

Microstructured FBG hydrogen sensor based on Pt-loaded WO3

Xian Zhou, Yutang Dai, Joseph Muna Karanja, Fufei Liu, and Minghong Yang
Opt. Express 25(8) 8777-8786 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.