Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-performance sensor achieved by hybrid guide-mode resonance/surface plasmon resonance platform

Not Accessible

Your library or personal account may give you access

Abstract

We perform a comprehensive analysis of multiband absorption properties in a metal-dielectric-metal-dielectric (MDMD) nanostructure under TM wave illumination. The multiband absorption can be attributed to the hybridization of the surface plasmon resonance (SPR) and the guide-mode resonance (GMR), and we identify the hybrid GMR/SPR by the dispersion relation equations of the SPR and GMR, respectively. More importantly, the MDMD nanostructure is very sensitive to the change of the dielectric environment for the special hybrid structure; thus, it can function as a good candidate for ultrasensitive biochemical sensing. The highest sensitivity of the MDMD nanostructure reaches 1087 nm/RIU with the figure of merit (FoM) of 23 and the new figure of merit (FoM*) of 483; it is performed by the absorption peak at 1796.1 nm of the double surface plasmon polariton with the strongest field enhancement at the surface.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF2 prism

Yuncai Feng, Youwen Liu, and Jinghua Teng
Appl. Opt. 57(14) 3639-3644 (2018)

Design of a high-performance graphene/SiO2-Ag periodic grating/MoS2 surface plasmon resonance sensor

XiaoLin Liu, Jin Liu, HaiMa Yang, Bo Huang, and GuoHui Zeng
Appl. Opt. 61(23) 6752-6760 (2022)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.