Abstract

Bonnet polishing technology has been widely applied in precision optical machining. Until now, most of the research concerning the modeling for material removal mechanisms of bonnet polishing have been presented based on the well-known Preston model. However, the various parameters involved in the bonnet polishing process are not formulated into that model, such as slurry characteristics, pad properties, bonnet sizes, processing conditions, etc. Recently, several analysis models capturing those various parameters have been developed and are even capable of interpreting non-Prestonian behaviors, but the pad wear effect has still not been taken into account. Hence, the purpose of this paper is to establish an improved analysis model by incorporating the pad wear effect with the cumulative polishing time. Compared with the previous analysis model and Preston model, the predicted results of the improved analysis model are much closer to the experimental data and become more acceptable. According to the analysis of key parameters, the understanding of material removal mechanisms in bonnet polishing is further completed, and the time-dependent pad wear effect should no longer be neglected.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of fiber-based tools for glass polishing using experimental and computational approaches

Hossein Shahinian, Harish Cherukuri, and Brigid Mullany
Appl. Opt. 55(16) 4307-4316 (2016)

Time-varying tool influence function model of bonnet polishing for aspheric surfaces

Bo Zhong, Chunjin Wang, Xianhua Chen, and Jian Wang
Appl. Opt. 58(4) 1101-1109 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription