Abstract

We have developed a broadband time-resolved multi-channel near-infrared spectroscopy system that can monitor the physiological responses of the adult human brain. This system is composed of a supercontinuum laser for the source part and of an intensified charge-coupled device camera coupled with an imaging spectrometer for the detection part. It allows the detection of the spectral, from 600 to 900 nm, and spatial dimensions as well as the arrival time of photon information simultaneously. We describe the setup and its characterization in terms of temporal instrument response function, wavelength sensitivity, and stability. The ability of the system to detect the hemodynamic response is then demonstrated. First, an in vivo experiment on an adult volunteer was performed to monitor the response in the arm during a cuff occlusion. Second, the response in the brain during a cognitive task was monitored on a group of five healthy volunteers. Moreover, looking at the response at different time windows, we could monitor the hemodynamic response in depth, enhancing the detection of the cortical activation. Those first results demonstrate the ability of our system to discriminate between the responses of superficial and deep tissues, addressing an important issue in functional near-infrared spectroscopy.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently?

Androu Abdalmalak, Daniel Milej, Mamadou Diop, Mahsa Shokouhi, Lorina Naci, Adrian M. Owen, and Keith St. Lawrence
Biomed. Opt. Express 8(4) 2162-2172 (2017)

Effect of a thin superficial layer on the estimate of hemodynamic changes in a two-layer medium by time domain NIRS

Rebecca Re, Davide Contini, Lucia Zucchelli, Alessandro Torricelli, and Lorenzo Spinelli
Biomed. Opt. Express 7(2) 264-278 (2016)

Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation

Phong Phan, David Highton, Jonathan Lai, Martin Smith, Clare Elwell, and Ilias Tachtsidis
Biomed. Opt. Express 7(11) 4424-4440 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 62104 (2007).
    [Crossref]
  2. W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
    [Crossref]
  3. D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
    [Crossref]
  4. B. R. Rosen and R. L. Savoy, “fMRI at 20: has it changed the world?” Neuroimage 62, 1316–1324 (2012).
    [Crossref]
  5. E. Bullmore, “The future of functional MRI in clinical medicine,” Neuroimage 62, 1267–1271 (2012).
    [Crossref]
  6. R. A. Poldrack, “The future of fMRI in cognitive neuroscience,” Neuroimage 62, 1216–1220 (2012).
    [Crossref]
  7. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
    [Crossref]
  8. T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
    [Crossref]
  9. M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. R. Soc. A 369, 4452–4469 (2011).
    [Crossref]
  10. S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45, 289–299 (2008).
    [Crossref]
  11. H. J. Spiers and E. A. Maguire, “Decoding human brain activity during real-world experiences,” Trends Cogn. Sci. 11, 356–365 (2007).
    [Crossref]
  12. S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
    [Crossref]
  13. R. B. Buxton, “Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism,” Front. Neuroenerg. 2, 8 (2010).
    [Crossref]
  14. D. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
    [Crossref]
  15. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
    [Crossref]
  16. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
    [Crossref]
  17. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32, 2492–2500 (2001).
    [Crossref]
  18. L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
    [Crossref]
  19. L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
    [Crossref]
  20. M. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [Crossref]
  21. Y. I. Satoru Kohno and Y. H. Satoru Kohno, “Temporal-spatial distribution of skin hemoglobin signals on the forehead during a verbal fluency task,” in FNIRS (2014), p. 230.
  22. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
    [Crossref]
  23. X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3, 015004 (2016).
    [Crossref]
  24. B. Montcel, R. Chabrier, and P. Poulet, “Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics,” Opt. Express 14, 12271–12287 (2006).
    [Crossref]
  25. A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
    [Crossref]
  26. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44, 1942–1947 (2005).
    [Crossref]
  27. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
    [Crossref]
  28. K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
    [Crossref]
  29. C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
    [Crossref]
  30. S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
    [Crossref]
  31. S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).
  32. T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
    [Crossref]
  33. F. Lange, F. Peyrin, and B. Montcel, “A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity,” in Advanced Microscopy Techniques IV; and Neurophotonics II (OSA, 2015), paper 95360R.
  34. V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage 34, 1600–1611 (2007).
    [Crossref]
  35. A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
    [Crossref]
  36. C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
    [Crossref]
  37. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
    [Crossref]
  38. J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
    [Crossref]
  39. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
    [Crossref]
  40. F. Lange, L. Dunne, and I. Tachtsidis, “Evaluation of haemoglobin and cytochrome responses during forearm ischaemia using multi-wavelength time domain NIRS,” in Advances in Experimental Medicine and Biology, H. J. Halpern, J. C. LaManna, D. K. Harrison, and B. Epel, eds., Advances in Experimental Medicine and Biology (Springer, 2017), Vol. 977, pp. 67–72.
  41. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
    [Crossref]
  42. J. Selb, D. K. Joseph, and D. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11, 044008 (2006).
    [Crossref]
  43. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
    [Crossref]
  44. A. Abdalmalak, D. Milej, M. Diop, M. Shokouhi, L. Naci, A. M. Owen, and K. St. Lawrence, “Can time-resolved NIRS provide the sensitivity to detect brain activity during motor imagery consistently?” Biomed. Opt. Express 8, 2162 (2017).
    [Crossref]
  45. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).
    [Crossref]
  46. T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).
  47. K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
    [Crossref]
  48. G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
    [Crossref]
  49. G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
    [Crossref]
  50. I. Tachtsidis and F. Scholkmann, “Publisher’s note: false positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 039801 (2016).
    [Crossref]
  51. A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.
  52. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
    [Crossref]
  53. G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21, 091307 (2016).
    [Crossref]
  54. P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, and I. Tachtsidis, “Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation,” Biomed. Opt. Express 7, 4424–4440 (2016).
    [Crossref]
  55. H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).
  56. C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
    [Crossref]
  57. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
    [Crossref]
  58. C. V. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak camera: a multidetector for diffuse optical tomography,” Appl. Opt. 42, 3313–3320 (2003).
    [Crossref]
  59. S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
    [Crossref]
  60. L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a near infrared multi-wavelength, multi-channel, time-resolved spectrometer for measuring brain tissue haemodynamics and metabolism,” in Oxygen Transport to Tissue XXXVI, H. M. Swartz, D. K. Harrison, and D. F. Bruley, eds., Advances in Experimental Medicine and Biology (Springer, 2014), Vol. 812, pp. 181–186.
  61. F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
    [Crossref]
  62. D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
    [Crossref]
  63. A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
    [Crossref]

2019 (1)

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

2017 (1)

2016 (6)

P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, and I. Tachtsidis, “Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation,” Biomed. Opt. Express 7, 4424–4440 (2016).
[Crossref]

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3, 015004 (2016).
[Crossref]

I. Tachtsidis and F. Scholkmann, “Publisher’s note: false positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 039801 (2016).
[Crossref]

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21, 091307 (2016).
[Crossref]

2015 (1)

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

2014 (8)

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
[Crossref]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

2013 (3)

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

2012 (7)

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

B. R. Rosen and R. L. Savoy, “fMRI at 20: has it changed the world?” Neuroimage 62, 1316–1324 (2012).
[Crossref]

E. Bullmore, “The future of functional MRI in clinical medicine,” Neuroimage 62, 1267–1271 (2012).
[Crossref]

R. A. Poldrack, “The future of fMRI in cognitive neuroscience,” Neuroimage 62, 1216–1220 (2012).
[Crossref]

2011 (4)

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. R. Soc. A 369, 4452–4469 (2011).
[Crossref]

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

2010 (3)

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
[Crossref]

R. B. Buxton, “Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism,” Front. Neuroenerg. 2, 8 (2010).
[Crossref]

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).
[Crossref]

2009 (1)

T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).

2008 (3)

G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
[Crossref]

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45, 289–299 (2008).
[Crossref]

2007 (3)

H. J. Spiers and E. A. Maguire, “Decoding human brain activity during real-world experiences,” Trends Cogn. Sci. 11, 356–365 (2007).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 62104 (2007).
[Crossref]

V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage 34, 1600–1611 (2007).
[Crossref]

2006 (3)

2005 (2)

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44, 1942–1947 (2005).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

2004 (4)

2003 (2)

C. V. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak camera: a multidetector for diffuse optical tomography,” Appl. Opt. 42, 3313–3320 (2003).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[Crossref]

2001 (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32, 2492–2500 (2001).
[Crossref]

2000 (1)

W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
[Crossref]

1999 (1)

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

1995 (3)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

M. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[Crossref]

Abdalmalak, A.

Abeln, V.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Abrahamsson, C.

Al-Rawi, P. G.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32, 2492–2500 (2001).
[Crossref]

Andersson-Engels, S.

Arridge, S.

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Askew, C. D.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Bale, G.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21, 091307 (2016).
[Crossref]

Bargigia, I.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

Bauernfeind, G.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
[Crossref]

G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
[Crossref]

Blasi, A.

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Boas, D.

D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
[Crossref]

L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

J. Selb, D. K. Joseph, and D. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11, 044008 (2006).
[Crossref]

D. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[Crossref]

Boas, D. A.

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

Boso, G.

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Botwicz, M.

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Boumans, T.

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Brühl, R.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Bullmore, E.

E. Bullmore, “The future of functional MRI in clinical medicine,” Neuroimage 62, 1267–1271 (2012).
[Crossref]

Buxton, R. B.

R. B. Buxton, “Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism,” Front. Neuroenerg. 2, 8 (2010).
[Crossref]

Byun, K.

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Chabrier, R.

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

Contini, D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref]

Cooper, C. E.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

Cooper, R. J.

L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

Cope, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

Correia, T.

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Coulon, D.

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

Cubeddu, R.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Culver, J. P.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Cunin, B.

Dale, A. M.

D. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[Crossref]

Dalla Mora, A.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Dan, I.

V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage 34, 1600–1611 (2007).
[Crossref]

de Chatellus, H. G.

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Del Bianco, S.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Delpy, D.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

Delpy, D. T.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

Denise, P.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Derosiere, G.

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

Di Sante, G.

T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).

Diop, M.

Dirnagl, U.

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Dray, G.

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

Dunne, L.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a near infrared multi-wavelength, multi-channel, time-resolved spectrometer for measuring brain tissue haemodynamics and metabolism,” in Oxygen Transport to Tissue XXXVI, H. M. Swartz, D. K. Harrison, and D. F. Bruley, eds., Advances in Experimental Medicine and Biology (Springer, 2014), Vol. 812, pp. 181–186.

F. Lange, L. Dunne, and I. Tachtsidis, “Evaluation of haemoglobin and cytochrome responses during forearm ischaemia using multi-wavelength time domain NIRS,” in Advances in Experimental Medicine and Biology, H. J. Halpern, J. C. LaManna, D. K. Harrison, and B. Epel, eds., Advances in Experimental Medicine and Biology (Springer, 2017), Vol. 977, pp. 67–72.

Durduran, T.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Eggebrecht, A. T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Elwell, C.

P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, and I. Tachtsidis, “Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation,” Biomed. Opt. Express 7, 4424–4440 (2016).
[Crossref]

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Elwell, C. E.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21, 091307 (2016).
[Crossref]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
[Crossref]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

Everdell, N.

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Fang, Q.

Fantini, S.

A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[Crossref]

Farina, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Farzam, P.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

Ferradal, S. L.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Ferrari, M.

D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
[Crossref]

T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 62104 (2007).
[Crossref]

Folestad, S.

Franceschini, M. A.

D. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[Crossref]

Gagnon, L.

L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

Ghosh, A.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

Gibson, A.

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Greve, D. N.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

Grosenick, D.

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[Crossref]

Hale, L.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Hebden, J.

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a near infrared multi-wavelength, multi-channel, time-resolved spectrometer for measuring brain tissue haemodynamics and metabolism,” in Oxygen Transport to Tissue XXXVI, H. M. Swartz, D. K. Harrison, and D. F. Bruley, eds., Advances in Experimental Medicine and Biology (Springer, 2014), Vol. 812, pp. 181–186.

Hebden, J. C. J.

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Heekeren, H. R.

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Highton, D.

P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, and I. Tachtsidis, “Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation,” Biomed. Opt. Express 7, 4424–4440 (2016).
[Crossref]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

Hirsch, J.

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3, 015004 (2016).
[Crossref]

Hoffmann, U.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Hyodo, K.

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Iwano, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Jelzow, A.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Johansson, J.

Joseph, D. K.

J. Selb, D. K. Joseph, and D. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11, 044008 (2006).
[Crossref]

Jurcak, V.

V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage 34, 1600–1611 (2007).
[Crossref]

Kacprzak, M.

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Kato, M.

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Kawagoe, R.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

Kirilina, E.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Kirkpatrick, P. J.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32, 2492–2500 (2001).
[Crossref]

Kitazawa, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Kohl-Bareis, M.

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Kolyva, C.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

Kujach, S.

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Lai, J.

Lange, F.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

F. Lange, F. Peyrin, and B. Montcel, “A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity,” in Advanced Microscopy Techniques IV; and Neurophotonics II (OSA, 2015), paper 95360R.

F. Lange, L. Dunne, and I. Tachtsidis, “Evaluation of haemoglobin and cytochrome responses during forearm ischaemia using multi-wavelength time domain NIRS,” in Advances in Experimental Medicine and Biology, H. J. Halpern, J. C. LaManna, D. K. Harrison, and B. Epel, eds., Advances in Experimental Medicine and Biology (Springer, 2017), Vol. 977, pp. 67–72.

Lawrence, K. St.

Leeb, R.

G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
[Crossref]

Lichty, W.

W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
[Crossref]

Liebert, A.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[Crossref]

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Limongi, T.

T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).

Lindner, C.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

Lloyd-Fox, S.

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

Macdonald, R.

Maguire, E. A.

H. J. Spiers and E. A. Maguire, “Decoding human brain activity during real-world experiences,” Trends Cogn. Sci. 11, 356–365 (2007).
[Crossref]

Mandrick, K.

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

Maniewski, R.

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Martelli, F.

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Martinenghi, E.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Martino, M.

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Matcher, S. J.

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

Mathevon, N.

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Micallef, J.-P.

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

Milej, D.

Möller, M.

Montcel, B.

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

B. Montcel, R. Chabrier, and P. Poulet, “Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics,” Opt. Express 14, 12271–12287 (2006).
[Crossref]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl. Opt. 44, 1942–1947 (2005).
[Crossref]

F. Lange, F. Peyrin, and B. Montcel, “A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity,” in Advanced Microscopy Techniques IV; and Neurophotonics II (OSA, 2015), paper 95360R.

Mora, A. D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

Moroz, T.

Mottin, S.

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Naci, L.

Neuper, C.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
[Crossref]

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

Noah, J. A.

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3, 015004 (2016).
[Crossref]

Obrig, H.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
[Crossref]

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Ogden, T.

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

Osei, E. K.

Owen, A. M.

Paglia, F.

Pagliazzi, M.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

Patterson, M.

Perdue, K. L.

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

Perrey, S.

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45, 289–299 (2008).
[Crossref]

Peyrin, F.

F. Lange, F. Peyrin, and B. Montcel, “A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity,” in Advanced Microscopy Techniques IV; and Neurophotonics II (OSA, 2015), paper 95360R.

Pfurtscheller, G.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
[Crossref]

G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
[Crossref]

Phan, P.

Pifferi, A.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Poldrack, R. A.

R. A. Poldrack, “The future of fMRI in cognitive neuroscience,” Neuroimage 62, 1216–1220 (2012).
[Crossref]

Poulet, P.

Quaresima, V.

T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 62104 (2007).
[Crossref]

Ramstein, S.

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Rinneberg, H.

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Rosen, B. R.

B. R. Rosen and R. L. Savoy, “fMRI at 20: has it changed the world?” Neuroimage 62, 1316–1324 (2012).
[Crossref]

Sakatania, K.

W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
[Crossref]

Sassaroli, A.

A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[Crossref]

Satoru Kohno, Y. H.

Y. I. Satoru Kohno and Y. H. Satoru Kohno, “Temporal-spatial distribution of skin hemoglobin signals on the forehead during a verbal fluency task,” in FNIRS (2014), p. 230.

Satoru Kohno, Y. I.

Y. I. Satoru Kohno and Y. H. Satoru Kohno, “Temporal-spatial distribution of skin hemoglobin signals on the forehead during a verbal fluency task,” in FNIRS (2014), p. 230.

Savoy, R. L.

B. R. Rosen and R. L. Savoy, “fMRI at 20: has it changed the world?” Neuroimage 62, 1316–1324 (2012).
[Crossref]

Sawosz, P.

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Schneider, S.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Scholkmann, F.

I. Tachtsidis and F. Scholkmann, “Publisher’s note: false positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 039801 (2016).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Sekar, S. K. V.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

Selb, J.

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

J. Selb, D. K. Joseph, and D. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11, 044008 (2006).
[Crossref]

Shibuya, S.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

Shokouhi, M.

Smielewski, P.

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32, 2492–2500 (2001).
[Crossref]

Smith, M.

P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, and I. Tachtsidis, “Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation,” Biomed. Opt. Express 7, 4424–4440 (2016).
[Crossref]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. R. Soc. A 369, 4452–4469 (2011).
[Crossref]

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Soya, H.

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Spiers, H. J.

H. J. Spiers and E. A. Maguire, “Decoding human brain activity during real-world experiences,” Trends Cogn. Sci. 11, 356–365 (2007).
[Crossref]

Spinelli, L.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Steinbrink, J.

Strüder, H. K.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Suwabe, K.

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Svanberg, S.

Svensson, T.

Tachtsidis, I.

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21, 091307 (2016).
[Crossref]

I. Tachtsidis and F. Scholkmann, “Publisher’s note: false positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 039801 (2016).
[Crossref]

P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, and I. Tachtsidis, “Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation,” Biomed. Opt. Express 7, 4424–4440 (2016).
[Crossref]

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3, 2550–2566 (2012).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

F. Lange, L. Dunne, and I. Tachtsidis, “Evaluation of haemoglobin and cytochrome responses during forearm ischaemia using multi-wavelength time domain NIRS,” in Advances in Experimental Medicine and Biology, H. J. Halpern, J. C. LaManna, D. K. Harrison, and B. Epel, eds., Advances in Experimental Medicine and Biology (Springer, 2017), Vol. 977, pp. 67–72.

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a near infrared multi-wavelength, multi-channel, time-resolved spectrometer for measuring brain tissue haemodynamics and metabolism,” in Oxygen Transport to Tissue XXXVI, H. M. Swartz, D. K. Harrison, and D. F. Bruley, eds., Advances in Experimental Medicine and Biology (Springer, 2014), Vol. 812, pp. 181–186.

Taga, G.

D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
[Crossref]

Takahashi, T.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

Takikawa, Y.

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

Taroni, P.

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

Torregrossa, M.

Torricelli, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy,” Opt. Express 14, 5418–5432 (2006).
[Crossref]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Tosi, A.

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

Tsuzuki, D.

V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage 34, 1600–1611 (2007).
[Crossref]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

Uhring, W.

Van Audekerke, J.

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Van der Linden, A.

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Verhoye, M.

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Vignal, C.

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
[Crossref]

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Vogt, T.

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

von Pannwitz, W.

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Wabnitz, H.

A. Jelzow, H. Wabnitz, I. Tachtsidis, E. Kirilina, R. Brühl, and R. Macdonald, “Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement,” Biomed. Opt. Express 5, 1465–1482 (2014).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl. Opt. 43, 3037–3047 (2004).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[Crossref]

Weigl, W.

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Wenzel, R.

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

Wilson, B. C.

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 62104 (2007).
[Crossref]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Wriessnegger, S. C.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
[Crossref]

G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
[Crossref]

Xie, Y.

W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
[Crossref]

Yücel, M. A.

L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

Zaccanti, G.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Zhang, X.

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3, 015004 (2016).
[Crossref]

Zimmermann, B. B.

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

Zint, C. V.

Zou, H.

W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
[Crossref]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

Anal. Biochem. (1)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[Crossref]

Appl. Opt. (4)

Biomed. Opt. Express (5)

Biomed. Tech. (1)

G. Bauernfeind, R. Leeb, S. C. Wriessnegger, and G. Pfurtscheller, “Development, set-up and first results for a one-channel near-infrared spectroscopy system,” Biomed. Tech. 53, 36–43 (2008).
[Crossref]

Eur. J. Appl. Physiol. (1)

S. Schneider, V. Abeln, C. D. Askew, T. Vogt, U. Hoffmann, P. Denise, and H. K. Strüder, “Changes in cerebral oxygenation during parabolic flight,” Eur. J. Appl. Physiol. 113, 1617–1623 (2013).
[Crossref]

Front. Neuroenerg. (1)

R. B. Buxton, “Interpreting oxygenation-based neuroimaging signals: the importance and the challenge of understanding brain oxygen metabolism,” Front. Neuroenerg. 2, 8 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. K. V. Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) time-resolved diffuse optical spectrometer for clinical use,” IEEE J. Sel. Top. Quantum Electron. 22, 406–414 (2016).
[Crossref]

F. Lange, L. Dunne, L. Hale, and I. Tachtsidis, “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25, 1–12 (2019).
[Crossref]

Int. J. Bioelectromagn. (1)

T. Limongi, G. Di Sante, M. Ferrari, and V. Quaresima, “Detecting mental calculation related frontal cortex oxygenation changes for brain computer interface using multi-channel functional near infrared topography,” Int. J. Bioelectromagn. 11, 86–90 (2009).

Int. J. Ind. Ergon. (1)

K. Mandrick, G. Derosiere, G. Dray, D. Coulon, J.-P. Micallef, and S. Perrey, “Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses,” Int. J. Ind. Ergon. 43, 335–341 (2013).
[Crossref]

Int. J. Psychophysiol. (1)

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76, 186–192 (2010).
[Crossref]

J. Biomed. Opt. (5)

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21, 091307 (2016).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8, 512–516 (2003).
[Crossref]

J. Selb, D. K. Joseph, and D. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11, 044008 (2006).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21, 091310 (2016).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12, 62104 (2007).
[Crossref]

J. Cereb. Blood Flow Metab. (3)

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 393–400 (2011).
[Crossref]

S. Mottin, B. Montcel, H. G. de Chatellus, S. Ramstein, C. Vignal, and N. Mathevon, “Corrigendum: functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds,” J. Cereb. Blood Flow Metab. 31, 1170 (2011).

H. R. Heekeren, M. Kohl-Bareis, H. Obrig, R. Wenzel, W. von Pannwitz, S. J. Matcher, U. Dirnagl, C. E. Cooper, and A. Villringer, “Noninvasive assessment of changes in cytochrome-c oxidase oxidation in human subjects during visual stimulation,” J. Cereb. Blood Flow Metab. 19, 592–603 (1999).

J. Exerc. Nutr. Biochem. (1)

K. Byun, K. Hyodo, K. Suwabe, S. Kujach, M. Kato, and H. Soya, “Possible influences of exercise-intensity-dependent increases in non-cortical hemodynamic variables on NIRS-based neuroimaging analysis during cognitive tasks: Technical note,” J. Exerc. Nutr. Biochem. 18, 327–332 (2014).
[Crossref]

Methods (1)

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45, 289–299 (2008).
[Crossref]

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8, 448–454 (2014).
[Crossref]

Neuroimage (13)

D. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-infrared spectroscopy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
[Crossref]

B. R. Rosen and R. L. Savoy, “fMRI at 20: has it changed the world?” Neuroimage 62, 1316–1324 (2012).
[Crossref]

E. Bullmore, “The future of functional MRI in clinical medicine,” Neuroimage 62, 1267–1271 (2012).
[Crossref]

R. A. Poldrack, “The future of fMRI in cognitive neuroscience,” Neuroimage 62, 1216–1220 (2012).
[Crossref]

D. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85, 6–27 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85, 28–50 (2014).
[Crossref]

T. Takahashi, Y. Takikawa, R. Kawagoe, S. Shibuya, T. Iwano, and S. Kitazawa, “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” Neuroimage 57, 991–1002 (2011).
[Crossref]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage 61, 70–81 (2012).
[Crossref]

L. Gagnon, R. J. Cooper, M. A. Yücel, K. L. Perdue, D. N. Greve, and D. Boas, “Short separation channel location impacts the performance of short channel regression in NIRS,” Neuroimage 59, 2518–2528 (2012).
[Crossref]

L. Gagnon, M. A. Yücel, D. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85, 127–135 (2014).
[Crossref]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85, 234–244 (2014).
[Crossref]

V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems,” Neuroimage 34, 1600–1611 (2007).
[Crossref]

Neurophotonics (2)

I. Tachtsidis and F. Scholkmann, “Publisher’s note: false positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3, 039801 (2016).
[Crossref]

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3, 015004 (2016).
[Crossref]

Opt. Express (3)

Philos. Trans. R. Soc. A (1)

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. R. Soc. A 369, 4452–4469 (2011).
[Crossref]

Phys. Med. Biol. (4)

C. Vignal, T. Boumans, B. Montcel, S. Ramstein, M. Verhoye, J. Van Audekerke, N. Mathevon, A. Van der Linden, and S. Mottin, “Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy,” Phys. Med. Biol. 53, 2457–2470 (2008).
[Crossref]

T. Correia, S. Lloyd-Fox, N. Everdell, A. Blasi, C. Elwell, J. C. J. Hebden, and A. Gibson, “Three-dimensional optical topography of brain activity in infants watching videos of human movement,” Phys. Med. Biol. 57, 1135–1146 (2012).
[Crossref]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[Crossref]

A. Sassaroli and S. Fantini, “Comment on the modified Beer-Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004).
[Crossref]

Phys. Rev. Lett. (1)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[Crossref]

Proc. SPIE (3)

J. Selb, B. B. Zimmermann, M. Martino, T. Ogden, and D. A. Boas, “Functional brain imaging with a supercontinuum time-domain NIRS system,” Proc. SPIE 8578, 857807 (2013).
[Crossref]

D. Contini, A. Dalla Mora, S. Arridge, F. Martelli, A. Tosi, G. Boso, A. Farina, T. Durduran, E. Martinenghi, A. Torricelli, and A. Pifferi, “Time-domain diffuse optics: towards next generation devices,” Proc. SPIE 9538, 95380A (2015).
[Crossref]

W. Lichty, K. Sakatania, Y. Xie, and H. Zou, “Application of near-infrared spectroscopy to investigate brain activity: clinical research,” Proc. SPIE 4082, 4082–4086 (2000).
[Crossref]

Stroke (1)

P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke 32, 2492–2500 (2001).
[Crossref]

Trends Cogn. Sci. (1)

H. J. Spiers and E. A. Maguire, “Decoding human brain activity during real-world experiences,” Trends Cogn. Sci. 11, 356–365 (2007).
[Crossref]

Other (5)

F. Lange, F. Peyrin, and B. Montcel, “A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity,” in Advanced Microscopy Techniques IV; and Neurophotonics II (OSA, 2015), paper 95360R.

Y. I. Satoru Kohno and Y. H. Satoru Kohno, “Temporal-spatial distribution of skin hemoglobin signals on the forehead during a verbal fluency task,” in FNIRS (2014), p. 230.

L. Dunne, J. Hebden, and I. Tachtsidis, “Development of a near infrared multi-wavelength, multi-channel, time-resolved spectrometer for measuring brain tissue haemodynamics and metabolism,” in Oxygen Transport to Tissue XXXVI, H. M. Swartz, D. K. Harrison, and D. F. Bruley, eds., Advances in Experimental Medicine and Biology (Springer, 2014), Vol. 812, pp. 181–186.

F. Lange, L. Dunne, and I. Tachtsidis, “Evaluation of haemoglobin and cytochrome responses during forearm ischaemia using multi-wavelength time domain NIRS,” in Advances in Experimental Medicine and Biology, H. J. Halpern, J. C. LaManna, D. K. Harrison, and B. Epel, eds., Advances in Experimental Medicine and Biology (Springer, 2017), Vol. 977, pp. 67–72.

A. Liebert, P. Sawosz, M. Kacprzak, W. Weigl, M. Botwicz, and R. Maniewski, “Time-resolved diffuse reflectance measurement carried out on the head of an adult at large source-detector separation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE, 2010), Vol. 2010, pp. 5784–5786.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of the system setup.
Fig. 2.
Fig. 2. Fibers/system interface. (a) Photograph of the fiber holder designed to hold the fibers on the head. (b) Photograph of the fiber holder on the camera end. Labels: I—Fibers’ tips end arranged vertically to be imaged by the spectrometer slit. II—Fiber holder. III—Bundles of fibers coming from the head of the subject. (c). Photograph of the designed headgear that hold five fibers on the prefrontal cortex of the subject.
Fig. 3.
Fig. 3. Typical image of the static condition. The horizontal axis represents the time of flight of photons, the vertical axis, and the wavelength axis. The shadow boxes (G1: Gate 1) represent the position of the gates for the dynamic condition.
Fig. 4.
Fig. 4. Instrument response function (IRF) of the system. Typical IRF of the system from 600 to 900 nm. The pink dots represent the mean time of flight of photons (MTOF).
Fig. 5.
Fig. 5. SNR of the IRF as a function of wavelength for two different integration times: 2 s (blue) and 200 ms (red).
Fig. 6.
Fig. 6. Hemodynamic response to an arterial occlusion of the left arm of a healthy subject.
Fig. 7.
Fig. 7. (a) Typical time-independent spectrum acquired on the front head. The intensity has been normalized by the spectral response of the IRF. (b) Typical IRF (gray line) and TPSF (black line) at 800 nm acquired on the front head at a SD of 2 cm. (c) Example of contrast to noise ratio (black) and contrast (gray line) for all gates at 800 nm for subject 2.
Fig. 8.
Fig. 8. Histogram of the repartition of tissue types (CSF, GM, WM, scalp, skull) as function as the arrival time of photons, for a detector positioned on the front head at 2 cm from the source.
Fig. 9.
Fig. 9. Example of responses for subject 4, for every window (early window, late window, and CW-like window), and for every optode. The red thick line represents the [HbO2] concentration changes, and the blue thin line represents the [HHb] concentration changes. The shadow regions represent the standard error of the mean across the 3 epochs. The red transparent boxes represent the activation period. The picture shows the positioning of every optode (S is the source).
Fig. 10.
Fig. 10. Example of non-task-related cortical responses for subject 1 and 2. Upper and lower panel show the inverted [HbO2] responses for subject 1 and 2, and in channel 1 and 2, respectively. It shows the decrease in [HbO2] in the early and CW windows but an increase in [HbO2] in the late window. The middle panel shows the response of channel 2 of subject 1. It shows a global response in all of the windows with an increase in both [HbO2] and [HHb]. The red thick line represents the [HbO2] concentration changes, and the blue thin line represents the [HHb] concentration changes. The shadow regions represent the standard error of the mean across the 3 epochs. The red transparent boxes represent the activation period.

Tables (3)

Tables Icon

Table 1. Summary of the System Parameters

Tables Icon

Table 2. Summary of the System Characterization

Tables Icon

Table 3. Mean Hemodynamic Responses Over the Three Runs for All Subjects, All Channels, and for the Three Windows: Early Gate, Late Gate, and CWa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔATT0(g)=Γ·ΔCTT0(g)·t(g)
C(λ,g,T)=I(,g,T)I0(,g)I0(,g).
CNR(λ)=C(λ,g)Actstd(C(λ,g)Rst),

Metrics