Abstract

Ultrashort laser pulses allow for in-volume processing of glass through non-linear absorption. This results in permanent material changes, largely independent of the processed glass, and it is of particular relevance for cleaving applications. In this paper, a laser with a wavelength of 1030 nm, pulse duration of 19 ps, repetition rate of 10 kHz, and burst regime consisting of either four or eight pulses, with an intra-burst pulse separation of 12.5 ns, is used. Subsequently, a Gaussian–Bessel focal line is generated in a fused silica substrate with the aid of an axicon configuration. We show how the structure of the modifications, including the length of material disruptions and affected zones, can be directly influenced by a reasonable choice of focus geometry, pulse energy, and burst regime. We achieve single-shot modifications with 2 μm in diameter and 7.6 mm in length, exceeding an aspect ratio of 1:3800. Furthermore, a maximum length of 10.8 mm could be achieved with a single shot.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mechanically inspired laser scribing of thin flexible glass

Adam R. Collins and Gerard M. O’Connor
Opt. Lett. 40(20) 4811-4814 (2015)

Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses

K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez
Opt. Express 25(26) 33271-33282 (2017)

Transition and self-healing process between chaotic and self-organized patterns observed during femtosecond laser writing

Nathaniel Groothoff, Max-Olivier Hongler, Peter Kazansky, and Yves Bellouard
Opt. Express 23(13) 16993-17007 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Ono and K. Tanaka, “Effect of scribe-wheel dimensions on the cutting of AMLCD glass substrate,” J. Soc. Inf. Disp. 9, 87–94 (2001).
    [Crossref]
  2. S. Nisar, L. Li, and M. Sheikh, “Laser glass cutting techniques—a review,” J. Laser Appl. 25, 042010 (2013).
    [Crossref]
  3. H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
    [Crossref]
  4. A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
    [Crossref]
  5. L. Shitova, N. Lalykin, and T. Kuznetsova, “Glass edge quality and strength,” Glass Ceram. 48, 327–329 (1991).
    [Crossref]
  6. T. Ono and R. Allaire, “Fracture analysis, a basic tool to solve breakage issues,” (Taiwan FPD Expo 2000, 2000).
  7. G. D. Quinn and G. D. Quinn, Fractography of Ceramics and Glasses (National Institute of Standards and Technology, 2007).
  8. W. Vogel, Glaschemie (Springer, 2013).
  9. L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
    [Crossref]
  10. E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
    [Crossref]
  11. C.-H. Tsai and C.-S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519–528 (2003).
    [Crossref]
  12. C.-H. Tsai and B.-C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155–1162 (2007).
  13. K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
    [Crossref]
  14. K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
    [Crossref]
  15. S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
    [Crossref]
  16. K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
    [Crossref]
  17. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1  kW 1  mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41, 3439–3442 (2016).
    [Crossref]
  18. S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
    [Crossref]
  19. M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
    [Crossref]
  20. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6, 607–621 (2012).
    [Crossref]
  21. F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
    [Crossref]
  22. S. Mitra, M. Chanal, R. Clady, A. Mouskeftaras, and D. Grojo, “Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining,” Appl. Opt. 54, 7358–7365 (2015).
    [Crossref]
  23. R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
    [Crossref]
  24. K. Mishchik, R. Beuton, O. D. Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
    [Crossref]
  25. K. Bergner, D. Flamm, M. Jenne, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved tomography of ultrafast laser-matter interaction,” Opt. Express 26, 2873–2883 (2018).
    [Crossref]
  26. J. Dudutis, R. Stonys, G. Račiukaitis, and P. Gečys, “Aberration-controlled Bessel beam processing of glass,” Opt. Express 26, 3627–3637 (2018).
    [Crossref]
  27. M. Kumkar, F. Zimmermann, J. Kleiner, D. Flamm, M. Jenne, D. Grossmann, and S. Nolte, “Beam shaping and in-situ diagnostics for development of transparent materials processing,” Proc. SPIE 10522, 105220H (2018).
    [Crossref]
  28. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
    [Crossref]
  29. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  30. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  31. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
    [Crossref]
  32. J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated Bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
    [Crossref]
  33. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  34. D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
    [Crossref]
  35. S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
    [Crossref]
  36. C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
    [Crossref]
  37. B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).
  38. F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
    [Crossref]
  39. R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
    [Crossref]
  40. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
    [Crossref]
  41. N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
    [Crossref]
  42. S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express 24, 17572–17592 (2016).
    [Crossref]
  43. C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
    [Crossref]
  44. E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
    [Crossref]
  45. T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
    [Crossref]
  46. C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
    [Crossref]
  47. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
    [Crossref]
  48. Corning, “HPFS® Fused Silica Standard Grade,” Retrieved 06 June 2018, https://www.corning.com/media/worldwide/csm/documents/acc05106b701420999327978ea88a83b4.pdf .
  49. O. Brzobohatý, T. Čižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
    [Crossref]
  50. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [Crossref]
  51. J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
    [Crossref]
  52. Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
    [Crossref]
  53. D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149–10153 (2007).
    [Crossref]
  54. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37, 482–484 (2012).
    [Crossref]
  55. K. Bergner, B. Seyfarth, K. Lammers, T. Ullsperger, S. Döring, M. Heinrich, M. Kumkar, D. Flamm, A. Tünnermann, and S. Nolte, “Spatio-temporal analysis of glass volume processing using ultrashort laser pulses,” Appl. Opt. 57, 4618–4632 (2018).
    [Crossref]
  56. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
    [Crossref]
  57. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
    [Crossref]
  58. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
    [Crossref]
  59. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
    [Crossref]

2018 (5)

2017 (3)

2016 (6)

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1  kW 1  mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41, 3439–3442 (2016).
[Crossref]

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express 24, 17572–17592 (2016).
[Crossref]

J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated Bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
[Crossref]

2015 (3)

S. Mitra, M. Chanal, R. Clady, A. Mouskeftaras, and D. Grojo, “Millijoule femtosecond micro-Bessel beams for ultra-high aspect ratio machining,” Appl. Opt. 54, 7358–7365 (2015).
[Crossref]

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

2014 (1)

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

2013 (2)

S. Nisar, L. Li, and M. Sheikh, “Laser glass cutting techniques—a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

2012 (2)

2011 (4)

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
[Crossref]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
[Crossref]

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

2010 (6)

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[Crossref]

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
[Crossref]

S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
[Crossref]

2008 (6)

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref]

O. Brzobohatý, T. Čižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
[Crossref]

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

2007 (4)

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149–10153 (2007).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

C.-H. Tsai and B.-C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155–1162 (2007).

2006 (5)

A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[Crossref]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
[Crossref]

2004 (1)

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[Crossref]

2003 (2)

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
[Crossref]

C.-H. Tsai and C.-S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519–528 (2003).
[Crossref]

2002 (1)

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

2001 (1)

T. Ono and K. Tanaka, “Effect of scribe-wheel dimensions on the cutting of AMLCD glass substrate,” J. Soc. Inf. Disp. 9, 87–94 (2001).
[Crossref]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

1991 (1)

L. Shitova, N. Lalykin, and T. Kuznetsova, “Glass edge quality and strength,” Glass Ceram. 48, 327–329 (1991).
[Crossref]

1959 (1)

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[Crossref]

Abolghasemi, L.

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

Akçaalan, Ö.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Akturk, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

Al-Akwaa, N.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[Crossref]

Allaire, R.

T. Ono and R. Allaire, “Fracture analysis, a basic tool to solve breakage issues,” (Taiwan FPD Expo 2000, 2000).

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6, 607–621 (2012).
[Crossref]

Arnold, C. L.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Asik, M. D.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Audouard, E.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Aurich, J.

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Barcikowski, S.

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

Bergner, K.

Beuton, R.

Bhuyan, M.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

Bhuyan, M. K.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Bonanomi, S.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Bonse, J.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

Botcherby, E.

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[Crossref]

Bouchal, Z.

Brinksmeier, E.

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Brzobohatý, O.

Bulgakova, N. M.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Burakov, I. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Caulier, O. D.

Cerami, L. R.

Çetin, B.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Chanal, M.

Chassagne, B.

Chebbi, B.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[Crossref]

Chen, W.-J.

Chimier, B.

Choi, J.-Y.

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

Cižmár, T.

Clady, R.

Colombier, J.-P.

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

Couairon, A.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Courvoisier, F.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Deubener, J.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Dholakia, K.

Di Trapani, P.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Domke, M.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Döring, S.

Duchateau, G.

Dudley, J.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

Dudley, J. M.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Dudutis, J.

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6, 607–621 (2012).
[Crossref]

Eaton, S. M.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref]

Eberstein, M.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

Eckert, J.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Elahi, P.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Esser, D.

Flamm, D.

Franco, M.

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
[Crossref]

Furfaro, L.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Gamaly, E. G.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Gattass, R. R.

Gecys, P.

Giust, R.

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Goekce, B.

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

Golub, I.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[Crossref]

Gottmann, J.

Gottschall, T.

Grehn, M.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

Grojo, D.

Grossmann, D.

M. Kumkar, F. Zimmermann, J. Kleiner, D. Flamm, M. Jenne, D. Grossmann, and S. Nolte, “Beam shaping and in-situ diagnostics for development of transparent materials processing,” Proc. SPIE 10522, 105220H (2018).
[Crossref]

Gunn-Moore, F.

Hasaka, N.

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
[Crossref]

Hasegawa, S.

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Hayasaki, Y.

Heinrich, M.

Hendricks, F.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Herman, P.

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

Herman, P. R.

Hertel, I. V.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Ho, S.

Holzwarth, R.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Hong, S.-K.

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

Hönninger, C.

Hoogland, H.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Horbach, J.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Huber, H. P.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express 24, 17572–17592 (2016).
[Crossref]

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Ilday, F. Ö.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Itina, T.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Iwata, K.

Jacquot, M.

R. Meyer, M. Jacquot, R. Giust, J. Safioui, L. Rapp, L. Furfaro, P.-A. Lacourt, J. Dudley, and F. Courvoisier, “Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams,” Opt. Lett. 42, 4307–4310 (2017).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Jaeggi, B.

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

Jamison, A. O.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[Crossref]

Jedrkiewicz, O.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Jenne, M.

M. Kumkar, F. Zimmermann, J. Kleiner, D. Flamm, M. Jenne, D. Grossmann, and S. Nolte, “Beam shaping and in-situ diagnostics for development of transparent materials processing,” Proc. SPIE 10522, 105220H (2018).
[Crossref]

K. Bergner, D. Flamm, M. Jenne, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved tomography of ultrafast laser-matter interaction,” Opt. Express 26, 2873–2883 (2018).
[Crossref]

Jia, F.

Jukna, V.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Juodkazis, S.

Y. Hayasaki, K. Iwata, S. Hasegawa, A. Takita, and S. Juodkazis, “Time-resolved axial-view of the dielectric breakdown under tight focusing in glass,” Opt. Mater. Express 1, 1399–1408 (2011).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Juškaitis, R.

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[Crossref]

Kaiser, M.

Kalaycoiglu, H.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kang, H.-S.

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

Kaplina, T.

A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
[Crossref]

Karimelahi, S.

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kienel, M.

Kleiner, J.

M. Kumkar, F. Zimmermann, J. Kleiner, D. Flamm, M. Jenne, D. Grossmann, and S. Nolte, “Beam shaping and in-situ diagnostics for development of transparent materials processing,” Proc. SPIE 10522, 105220H (2018).
[Crossref]

Klenke, A.

Kling, R.

Klocke, F.

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Kollárová, V.

Kondratenko, V.

A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
[Crossref]

Kühn, U.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Kumkar, M.

Kuznetsova, T.

L. Shitova, N. Lalykin, and T. Kuznetsova, “Glass edge quality and strength,” Glass Ceram. 48, 327–329 (1991).
[Crossref]

Lacourt, P. A.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Lacourt, P.-A.

Lalykin, N.

L. Shitova, N. Lalykin, and T. Kuznetsova, “Glass edge quality and strength,” Glass Ceram. 48, 327–329 (1991).
[Crossref]

Lammers, K.

Li, J.

Li, L.

S. Nisar, L. Li, and M. Sheikh, “Laser glass cutting techniques—a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
[Crossref]

Limpert, J.

Lin, B.-C.

C.-H. Tsai and B.-C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155–1162 (2007).

Liou, C.-S.

C.-H. Tsai and C.-S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519–528 (2003).
[Crossref]

Lopez, J.

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Matylitsky, V.

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Mauclair, C.

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

Mauro, J. C.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
[Crossref]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Mermillod-Blondin, A.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Meshcheryakov, Y. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

Meyer, R.

Minko, S.

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[Crossref]

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

Mishchik, K.

K. Mishchik, R. Beuton, O. D. Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

Mitra, S.

Morita, H.

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
[Crossref]

Mottay, E.

Mouskeftaras, A.

Müller, M.

Mutlugünes, Y.

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Mysyrowicz, A.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
[Crossref]

Neuenschwander, B.

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

Ng, M. L.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref]

Nisar, S.

S. Nisar, L. Li, and M. Sheikh, “Laser glass cutting techniques—a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
[Crossref]

Nolte, S.

Oh, S.-C.

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

Ohmori, H.

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Ohmura, E.

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Ono, T.

T. Ono and K. Tanaka, “Effect of scribe-wheel dimensions on the cutting of AMLCD glass substrate,” J. Soc. Inf. Disp. 9, 87–94 (2001).
[Crossref]

T. Ono and R. Allaire, “Fracture analysis, a basic tool to solve breakage issues,” (Taiwan FPD Expo 2000, 2000).

Osellame, R.

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

Pasquiou, B.

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

Peschel, U.

Plötner, M.

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[Crossref]

Poumellec, B.

Prade, B.

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[Crossref]

Quinn, G. D.

G. D. Quinn and G. D. Quinn, Fractography of Ceramics and Glasses (National Institute of Standards and Technology, 2007).

G. D. Quinn and G. D. Quinn, Fractography of Ceramics and Glasses (National Institute of Standards and Technology, 2007).

Raciukaitis, G.

Ramme, M.

Rapp, L.

Rapp, S.

Remund, S.

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

Rezaei, S.

Richter, S.

Rosenfeld, A.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Rouxel, T.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Safdar, S.

S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
[Crossref]

Safioui, J.

Salut, R.

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[Crossref]

Schmidt, M.

Seuthe, T.

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

Seyfarth, B.

Sheikh, M.

S. Nisar, L. Li, and M. Sheikh, “Laser glass cutting techniques—a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
[Crossref]

Shestaev, E.

Shitova, L.

L. Shitova, N. Lalykin, and T. Kuznetsova, “Glass edge quality and strength,” Glass Ceram. 48, 327–329 (1991).
[Crossref]

Shore, P.

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Sibbett, W.

Skupin, S.

Solinov, V.

A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
[Crossref]

Song, M.-G.

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

Sonina, S. V.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

Stoian, R.

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

Stonys, R.

Streubel, R.

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

Sudrie, L.

Takita, A.

Tanaka, K.

T. Ono and K. Tanaka, “Effect of scribe-wheel dimensions on the cutting of AMLCD glass substrate,” J. Soc. Inf. Disp. 9, 87–94 (2001).
[Crossref]

Tsai, C.-H.

C.-H. Tsai and B.-C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155–1162 (2007).

C.-H. Tsai and C.-S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519–528 (2003).
[Crossref]

Tsampoula, X.

Tünnermann, A.

Ullsperger, T.

Vogel, W.

W. Vogel, Glaschemie (Springer, 2013).

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Wilson, T.

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[Crossref]

Wondraczek, L.

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Wortmann, D.

Xie, C.

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

Yamamoto, K.

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
[Crossref]

Yavas, S.

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Zemánek, P.

Zhang, H.

Zhang, J.

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

Zhimalov, A.

A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
[Crossref]

Zhou, B.

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

Zimmermann, F.

M. Kumkar, F. Zimmermann, J. Kleiner, D. Flamm, M. Jenne, D. Grossmann, and S. Nolte, “Beam shaping and in-situ diagnostics for development of transparent materials processing,” Proc. SPIE 10522, 105220H (2018).
[Crossref]

Adv. Mater. (1)

L. Wondraczek, J. C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, “Towards ultrastrong glasses,” Adv. Mater. 23, 4578–4586 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A (3)

J. Bonse, T. Seuthe, M. Grehn, M. Eberstein, A. Rosenfeld, and A. Mermillod-Blondin, “Time-resolved microscopy of fs-laser-induced heat flows in glasses,” Appl. Phys. A 124, 60 (2018).
[Crossref]

F. Courvoisier, J. Zhang, M. Bhuyan, M. Jacquot, and J. Dudley, “Applications of femtosecond Bessel beams to laser ablation,” Appl. Phys. A 112, 29–34 (2013).
[Crossref]

S. Karimelahi, L. Abolghasemi, and P. Herman, “Rapid micromachining of high aspect ratio holes in fused silica glass by high repetition rate picosecond laser,” Appl. Phys. A 114, 91–111 (2014).
[Crossref]

Appl. Phys. Lett. (4)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids,” Appl. Phys. Lett. 88, 201909 (2006).
[Crossref]

M. K. Bhuyan, F. Courvoisier, P. A. Lacourt, M. Jacquot, R. Salut, L. Furfaro, and J. M. Dudley, “High aspect ratio nanochannel machining using single-shot femtosecond Bessel beams,” Appl. Phys. Lett. 97, 081102 (2010).
[Crossref]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84, 1441–1443 (2004).
[Crossref]

CIRP Ann. (1)

E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. Aurich, P. Shore, and H. Ohmori, “Ultra-precision grinding,” CIRP Ann. 59, 652–671 (2010).
[Crossref]

Glass Ceram. (2)

A. Zhimalov, V. Solinov, V. Kondratenko, and T. Kaplina, “Laser cutting of float glass during production,” Glass Ceram. 63, 319–321 (2006).
[Crossref]

L. Shitova, N. Lalykin, and T. Kuznetsova, “Glass edge quality and strength,” Glass Ceram. 48, 327–329 (1991).
[Crossref]

High Power Laser Sci. Eng. (1)

C. Mauclair, A. Mermillod-Blondin, K. Mishchik, J. Bonse, A. Rosenfeld, J.-P. Colombier, and R. Stoian, “Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses,” High Power Laser Sci. Eng. 4, e46 (2016).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

C.-H. Tsai and B.-C. Lin, “Laser cutting with controlled fracture and pre-bending applied to LCD glass separation,” Int. J. Adv. Manuf. Technol. 32, 1155–1162 (2007).

J. Appl. Phys. (3)

N. M. Bulgakova, V. P. Zhukov, S. V. Sonina, and Y. P. Meshcheryakov, “Modification of transparent materials with ultrashort laser pulses: what is energetically and mechanically meaningful?” J. Appl. Phys. 118, 233108 (2015).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).
[Crossref]

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[Crossref]

J. Laser Appl. (1)

S. Nisar, L. Li, and M. Sheikh, “Laser glass cutting techniques—a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

J. Laser Micro/Nanoeng. (1)

B. Jaeggi, S. Remund, R. Streubel, B. Goekce, S. Barcikowski, and B. Neuenschwander, “Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process,” J. Laser Micro/Nanoeng. 12, 267–273 (2017).

J. Manuf. Sci. Eng. (1)

C.-H. Tsai and C.-S. Liou, “Fracture mechanism of laser cutting with controlled fracture,” J. Manuf. Sci. Eng. 125, 519–528 (2003).
[Crossref]

J. Non-Cryst. Solids (1)

S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357, 2387–2391 (2011).
[Crossref]

J. Phys. B (1)

C. L. Arnold, S. Akturk, A. Mysyrowicz, V. Jukna, A. Couairon, T. Itina, R. Stoian, C. Xie, J. Dudley, F. Courvoisier, S. Bonanomi, O. Jedrkiewicz, and P. Di Trapani, “Nonlinear Bessel vortex beams for applications,” J. Phys. B 48, 094006 (2015).
[Crossref]

J. Soc. Inf. Disp. (1)

T. Ono and K. Tanaka, “Effect of scribe-wheel dimensions on the cutting of AMLCD glass substrate,” J. Soc. Inf. Disp. 9, 87–94 (2001).
[Crossref]

Laser Photon. Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6, 607–621 (2012).
[Crossref]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Nature (1)

C. Kerse, H. Kalaycoığlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Opt. Commun. (3)

S. Akturk, B. Zhou, B. Pasquiou, M. Franco, and A. Mysyrowicz, “Intensity distribution around the focal regions of real axicons,” Opt. Commun. 281, 4240–4244 (2008).
[Crossref]

B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010).
[Crossref]

E. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006).
[Crossref]

Opt. Express (12)

T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008).
[Crossref]

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express 24, 17572–17592 (2016).
[Crossref]

D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, “Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses,” Opt. Express 19, 25632–25642 (2011).
[Crossref]

R. R. Gattass, L. R. Cerami, and E. Mazur, “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279–5284 (2006).
[Crossref]

O. Brzobohatý, T. Čižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref]

D. Wortmann, M. Ramme, and J. Gottmann, “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149–10153 (2007).
[Crossref]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
[Crossref]

K. Mishchik, R. Beuton, O. D. Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25, 33271–33282 (2017).
[Crossref]

K. Bergner, D. Flamm, M. Jenne, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved tomography of ultrafast laser-matter interaction,” Opt. Express 26, 2873–2883 (2018).
[Crossref]

J. Dudutis, R. Stonys, G. Račiukaitis, and P. Gečys, “Aberration-controlled Bessel beam processing of glass,” Opt. Express 26, 3627–3637 (2018).
[Crossref]

J. Dudutis, P. GeČys, and G. RaČiukaitis, “Non-ideal axicon-generated Bessel beam application for intra-volume glass modification,” Opt. Express 24, 28433–28443 (2016).
[Crossref]

Opt. Laser Technol. (1)

S. Nisar, M. Sheikh, L. Li, and S. Safdar, “The effect of material thickness, laser power and cutting speed on cut path deviation in high-power diode laser chip-free cutting of glass,” Opt. Laser Technol. 42, 1022–1031 (2010).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Precis. Eng. (3)

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of glass substrate thickness in laser scribing of glass,” Precis. Eng. 34, 55–61 (2010).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Three-dimensional thermal stress analysis on laser scribing of glass,” Precis. Eng. 32, 301–308 (2008).
[Crossref]

K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, “Influence of thermal expansion coefficient in laser scribing of glass,” Precis. Eng. 34, 70–75 (2010).
[Crossref]

Proc. SPIE (3)

H.-S. Kang, S.-K. Hong, S.-C. Oh, J.-Y. Choi, and M.-G. Song, “Cutting glass by laser,” Proc. SPIE 4426, 367–370 (2002).
[Crossref]

M. Kumkar, F. Zimmermann, J. Kleiner, D. Flamm, M. Jenne, D. Grossmann, and S. Nolte, “Beam shaping and in-situ diagnostics for development of transparent materials processing,” Proc. SPIE 10522, 105220H (2018).
[Crossref]

F. Hendricks, V. Matylitsky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Other (4)

Corning, “HPFS® Fused Silica Standard Grade,” Retrieved 06 June 2018, https://www.corning.com/media/worldwide/csm/documents/acc05106b701420999327978ea88a83b4.pdf .

T. Ono and R. Allaire, “Fracture analysis, a basic tool to solve breakage issues,” (Taiwan FPD Expo 2000, 2000).

G. D. Quinn and G. D. Quinn, Fractography of Ceramics and Glasses (National Institute of Standards and Technology, 2007).

W. Vogel, Glaschemie (Springer, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Photodiode signal of the extracted pulse train with four (black) and eight (red) pulses per burst. Temporal separation between intra-burst pulses is 12.5 ns, and the burst features a decreasing energy slope. The red and black traces were shifted in time for better visualization. (b) Simulated ideal on-axis intensity distribution of a quasi-Bessel beam by a perfect axicon illumination with an opening angle of 20°, 400 μJ pulse energy, and 19 ps pulse duration.
Fig. 2.
Fig. 2. Schematic representation of the used setup, according to [47].
Fig. 3.
Fig. 3. Simulated and measured modification lengths obtained by applying 1030 nm, 19 ps pulses with different pulse energies. The graph was normalized to the energy of the first pulse within the burst.
Fig. 4.
Fig. 4. (a) Microscopic images of homogeneous modification tracks before cleaving obtained with a four-pulse burst where the first pulse carries 365 μJ pulse energy. (b) Imperfections at the beginning of the modification track due to alignment and optics inaccuracies.
Fig. 5.
Fig. 5. Microscopic images of modification tracks before cleaving obtained with a (a) four-burst train, where the first pulse carries 930 μJ pulse energy and (b) eight-burst train, where the first pulse carries 937 μJ first pulse energy. Because an extensive energy contribution above the modification threshold disruptions distorts the modification track and influences follow-up pulses, these disruptions are increased in diameter and number in the eight-burst regime.
Fig. 6.
Fig. 6. Microscopic images of modification tracks before cleaving obtained with an eight-burst train, where the first pulse carries 2.85 mJ pulse energy. Due to an extensive energy contribution above the modification threshold, global disruptions interrupt the modification track and influence follow-up pulses.
Fig. 7.
Fig. 7. Retardance measurement of the modification tracks before cleaving obtained with a 20° axicon and four- and eight-burst trains, respectively. The spatial resolution d min 50    μm is too low to resolve single modifications, which results in an averaged stress measurement of the global changes.
Fig. 8.
Fig. 8. Microscopic images of the breaking edge after laser inscription obtained with (a) a four-pulse burst, where the first pulse carries 365 μJ pulse energy and (b) with an eight-burst train, where the first pulse carries 2.85 mJ pulse energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 2 π k z cos ( α 0 ) sin ( α 0 ) 2 e 2 ( z tan ( α 0 ) ω ) 2 , α 0 = n a n s n s π τ 2 ,

Metrics