Abstract

A long-distance inverse synthetic aperture LADAR (ISAL) imaging experiment outdoors over 1 km for cooperative targets is demonstrated, which gets a two-dimensional high-resolution image with resolution exceeding 2.5 cm. The system utilizes an electro-optic in-phase and quadrature modulator to output a linear frequency-modulated continuous waveform (LFMCW) with a bandwidth of 6 GHz and pulse repetition frequency (PRF) of 16.7 KHz. For the problem of the coherence of the laser, the effects of the coherent processing interval (CPI) and time delay of the local oscillator (LO) on the coherence are discussed. The fiber delay line is set and the CPI is reduced to lower the requirement of the frequency stability of the laser source. The images are formed by two-dimensional Fourier transform and joint time-frequency transform methods, respectively. In this paper, we present the system structure, imaging processing, and the experiment result in detail. The experiment result validates the performance of our system for ISAL imaging.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Linear frequency-modulated continuous-wave ladar system for synthetic aperture imaging

Guangzuo Li, Ran Wang, Ziqi Song, Keshu Zhang, Yirong Wu, and Jie Pan
Appl. Opt. 56(12) 3257-3262 (2017)

Multiple-input multiple-output synthetic aperture ladar system for wide-range swath with high azimuth resolution

Yu Tang, Bao Qin, Yun Yan, and Mengdao Xing
Appl. Opt. 55(6) 1401-1405 (2016)

Synthetic aperture ladar imaging demonstrations and information at very low return levels

Zeb W. Barber and Jason R. Dahl
Appl. Opt. 53(24) 5531-5537 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription