Abstract

Highly efficient transmission-type beam deflectors that have high angular resolution have been widely used for various applications. Continuously tunable beam deflectors have also been needed for many purposes. An indium-tin-oxide (ITO), widely used for transparent electrodes, was placed on the upper and lower glass substrate. The ITO layer on the lower substrate was patterned by the contact mask aligner for relatively wide input and output pad compared to main grating ITO patterns in the active area. These input and output pads on the lower substrate are connected to each driving integrated circuit (IC), which has 360 channels for continuous control. A small pixel pitch of grating patterns of 6 μm (the electrode width is 3 μm with a 3 μm spacing) was developed, and the maximum diffraction angle is calculated and measured at 2.541° with a wavelength of 532 nm. A minimal cell gap of 2.5 μm was applied for the full 2π phase modulation by using a high-birefringence liquid crystal. A driving module for continuous beam steering is also developed and applied to the beam deflector system. A diffraction efficiency of about 50.9% is observed at an angle of diffraction about 2.541°.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal blazed-grating beam deflector

Xu Wang, Daniel Wilson, Richard Muller, Paul Maker, and Demetri Psaltis
Appl. Opt. 39(35) 6545-6555 (2000)

On the fringing-field effect in liquid-crystal beam-steering devices

Boris Apter, Uzi Efron, and Eldad Bahat-Treidel
Appl. Opt. 43(1) 11-19 (2004)

Liquid crystal microlens with dual apertures and electrically controlling focus shift

Shengwu Kang and Xinyu Zhang
Appl. Opt. 53(2) 244-248 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst. 14, 307–317 (1993).
    [Crossref]
  2. R. M. Matic, “Blazed phase liquid crystal beam steering,” Proc. SPIE 2120, 194–205 (1994).
    [Crossref]
  3. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
    [Crossref]
  4. Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
    [Crossref]
  5. S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
    [Crossref]
  6. N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
    [Crossref]
  7. R. L. Sutherland, “Electrically switchable volume holographic gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [Crossref]
  8. S. T. Wu, C. S. Hsu, and K. F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74, 344–346 (1999).
    [Crossref]
  9. E. Schulze and W. Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
    [Crossref]
  10. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
    [Crossref]
  11. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000).
    [Crossref]
  12. L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
    [Crossref]
  13. G. Thalhammer, R. Bowman, G. Love, M. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21, 1779–1797 (2013).
    [Crossref]
  14. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
    [Crossref]

2013 (1)

2010 (1)

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

2009 (1)

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]

2005 (1)

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

2004 (1)

2002 (1)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[Crossref]

2000 (1)

1999 (1)

S. T. Wu, C. S. Hsu, and K. F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74, 344–346 (1999).
[Crossref]

1996 (2)

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High-efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21, 689–691 (1996).
[Crossref]

1995 (1)

E. Schulze and W. Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

1994 (2)

R. L. Sutherland, “Electrically switchable volume holographic gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[Crossref]

R. M. Matic, “Blazed phase liquid crystal beam steering,” Proc. SPIE 2120, 194–205 (1994).
[Crossref]

1993 (1)

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

Adams, W. W.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Anderson, M. H.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Apter, B.

Bahat-Treidel, E.

Bowman, R.

Bunning, T. J.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Chen, T.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Choi, W. K.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Davis, S. R.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Domash, L. H.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Dorschner, T. A.

Efron, U.

Fan-Chiang, K. H.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Farca, G.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Friedman, L. J.

Gauza, S.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Gomatam, B. N.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Gozewski, C. M.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Hirabayashi, K.

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

Hobbs, D. S.

Hsu, C. S.

S. T. Wu, C. S. Hsu, and K. F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74, 344–346 (1999).
[Crossref]

Johnson, S.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Kurokawa, T.

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

Lin, Y. H.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Love, G.

Maker, P.

Matic, R. M.

R. M. Matic, “Blazed phase liquid crystal beam steering,” Proc. SPIE 2120, 194–205 (1994).
[Crossref]

Muller, R.

Natarajan, L. V.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Padgett, M.

Psaltis, D.

Reden, W.

E. Schulze and W. Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

Ren, H.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Resler, D. P.

Ritsch-Marte, M.

Rommel, S. D.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

Sato, S.

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[Crossref]

Savage, N.

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]

Schulze, E.

E. Schulze and W. Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

Sharp, R. C.

Shyu, K. F.

S. T. Wu, C. S. Hsu, and K. F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74, 344–346 (1999).
[Crossref]

Sutherland, R. L.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

R. L. Sutherland, “Electrically switchable volume holographic gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[Crossref]

Thalhammer, G.

Tondiglia, V. P.

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Wang, X.

Wilson, D.

Wu, S. T.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

S. T. Wu, C. S. Hsu, and K. F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74, 344–346 (1999).
[Crossref]

Ye, M.

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[Crossref]

Zhu, X.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. L. Sutherland, “Electrically switchable volume holographic gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[Crossref]

S. T. Wu, C. S. Hsu, and K. F. Shyu, “High birefringence and wide nematic range bis-tolane liquid crystals,” Appl. Phys. Lett. 74, 344–346 (1999).
[Crossref]

Jpn. J. Appl. Phys. (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[Crossref]

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-focus cylindrical liquid crystal lenses,” Jpn. J. Appl. Phys. 44, 243–244 (2005).
[Crossref]

Liq. Cryst. (1)

K. Hirabayashi and T. Kurokawa, “Liquid-crystal devices for optical communication and information-processing systems,” Liq. Cryst. 14, 307–317 (1993).
[Crossref]

Nat. Photonics (1)

N. Savage, “Digital spatial light modulators,” Nat. Photonics 3, 170–172 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

E. Schulze and W. Reden, “Diffractive liquid crystal spatial light modulators with fine-pitch phase gratings,” Proc. SPIE 2408, 113–120 (1995).
[Crossref]

R. M. Matic, “Blazed phase liquid crystal beam steering,” Proc. SPIE 2120, 194–205 (1994).
[Crossref]

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by >1000 waves of optical phase control,” Proc. SPIE 7618, 76180E (2010).
[Crossref]

L. H. Domash, T. Chen, B. N. Gomatam, C. M. Gozewski, R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable-focus lens in holographic polymer-dispersed liquid crystal,” Proc. SPIE 2689, 188–194 (1996).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1       Constant beam steering angle
» Visualization 1       Constant beam steering angle
» Visualization 1       Constant beam steering angle

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Beam deflector system architecture.
Fig. 2.
Fig. 2. Concept of a beam deflector.
Fig. 3.
Fig. 3. Layout of ITO patterns in the lower substrate.
Fig. 4.
Fig. 4. Cross section SEM image of the ITO electrode in the active area on the lower substrate.
Fig. 5.
Fig. 5. Beam deflector system (a) driving module and (b) signal timing diagram in driving ICs.
Fig. 6.
Fig. 6. Phase delay as a function of the applied voltage.
Fig. 7.
Fig. 7. Diffraction efficiency at various steering angles.
Fig. 8.
Fig. 8. Captured images of a steered beam (see Visualization 1) with (a) steering angle zero, (b) steering angle 1°, and (c) the maximum steering angle 2.541°.

Tables (1)

Tables Icon

Table 1. Electrical Specification of Beam Deflector Driving Module

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ = arcsin ( λ n × p ) , n = m i ( 0 < i 360 ) ,
Δ ϕ = 2 π × Δ n × d λ , Δ n = n e n o ,

Metrics