Abstract

Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

Single-frequency microwave imaging with dynamic metasurface apertures

Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Thomas Fromenteze, Jonah N. Gollub, and David R. Smith
J. Opt. Soc. Am. B 34(8) 1713-1726 (2017)

Synthetic aperture radar with dynamic metasurface antennas: a conceptual development

Michael Boyarsky, Timothy Sleasman, Laura Pulido-Mancera, Thomas Fromenteze, Andreas Pedross-Engel, Claire M. Watts, Mohammadreza F. Imani, Matthew S. Reynolds, and David R. Smith
J. Opt. Soc. Am. A 34(5) A22-A36 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
    [Crossref]
  2. F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
    [Crossref]
  3. M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
    [Crossref]
  4. Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
    [Crossref]
  5. X. Zhuge and A. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process. 21, 3026–3033 (2012).
    [Crossref]
  6. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  7. W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62, 459–462 (2014).
    [Crossref]
  8. Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
    [Crossref]
  9. T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
    [Crossref]
  10. M. G. Amin, Through-the-Wall Radar Imaging (CRC Press, 2016).
  11. S. Depatla, C. R. Karanam, and Y. Mostofi, “Robotic through-wall imaging: radio-frequency imaging possibilities with unmanned vehicles,” IEEE Antennas Propag. Mag. 59(5), 47–60 (2017).
    [Crossref]
  12. M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999).
  13. E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
    [Crossref]
  14. R. Eils and C. Athale, “Computational imaging in cell biology,” J. Cell Biol. 161, 477–481 (2003).
    [Crossref]
  15. E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
    [Crossref]
  16. A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.
  17. S. Ochs and W. Pitz, “The TerraSAR-X and Tandem-X satellites,” in 3rd International Conference on Recent Advances in Space Technologies (IEEE, 2007), pp. 294–298.
  18. X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
    [Crossref]
  19. T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
    [Crossref]
  20. S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Verlag, 2014).
  21. G. Krieger, “Mimo-SAR: opportunities and pitfalls,” IEEE Trans. Geosci. Remote Sens. 52, 2628–2645 (2014).
    [Crossref]
  22. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
    [Crossref]
  23. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
    [Crossref]
  24. T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
    [Crossref]
  25. J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref]
  26. A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
    [Crossref]
  27. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
    [Crossref]
  28. K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
    [Crossref]
  29. D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [Crossref]
  30. H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
    [Crossref]
  31. O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
    [Crossref]
  32. M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
    [Crossref]
  33. M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
    [Crossref]
  34. T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.
  35. T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.
  36. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
    [Crossref]
  37. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
    [Crossref]
  38. T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
    [Crossref]
  39. M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
    [Crossref]
  40. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
    [Crossref]
  41. M. Johnson, “Opening satellite capacity to consumers with metamaterial antennas,” in Proceedings of the International Conference on Metamaterials, Photonic Crystals and Plasmonics (2016).
  42. T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
    [Crossref]
  43. C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
    [Crossref]
  44. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
    [Crossref]
  45. H. J. Callow, M. P. Hayes, and P. T. Gough, “Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry,” Electron. Lett. 38, 336–338 (2002).
    [Crossref]
  46. Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
    [Crossref]
  47. R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
    [Crossref]
  48. Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
    [Crossref]
  49. J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
    [Crossref]
  50. A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
    [Crossref]
  51. X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
    [Crossref]
  52. B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
    [Crossref]
  53. T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
    [Crossref]
  54. S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
    [Crossref]
  55. M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).
  56. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
    [Crossref]
  57. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).
  58. T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
    [Crossref]
  59. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
    [Crossref]
  60. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
    [Crossref]
  61. L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
    [Crossref]
  62. L. Pulido-Mancera, M. F. Imani, and D. R. Smith, “Discrete dipole approximation for simulation of unusually tapered leaky wave antennas,” in IEEE MTT-S International Microwave Symposium (IMS) (2017), pp. 409–412.
  63. L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).
  64. T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
    [Crossref]
  65. A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
    [Crossref]
  66. O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
    [Crossref]
  67. M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
    [Crossref]

2018 (1)

2017 (9)

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

S. Depatla, C. R. Karanam, and Y. Mostofi, “Robotic through-wall imaging: radio-frequency imaging possibilities with unmanned vehicles,” IEEE Antennas Propag. Mag. 59(5), 47–60 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).

2016 (10)

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

2015 (6)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

2014 (5)

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62, 459–462 (2014).
[Crossref]

G. Krieger, “Mimo-SAR: opportunities and pitfalls,” IEEE Trans. Geosci. Remote Sens. 52, 2628–2645 (2014).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

2013 (5)

T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
[Crossref]

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

2012 (2)

X. Zhuge and A. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process. 21, 3026–3033 (2012).
[Crossref]

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

2011 (3)

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

2010 (1)

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

2008 (1)

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

2005 (1)

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

2004 (2)

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

2003 (3)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[Crossref]

R. Eils and C. Athale, “Computational imaging in cell biology,” J. Cell Biol. 161, 477–481 (2003).
[Crossref]

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

2002 (2)

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

H. J. Callow, M. P. Hayes, and P. T. Gough, “Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry,” Electron. Lett. 38, 336–338 (2002).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

2000 (1)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

1991 (1)

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

1986 (1)

A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
[Crossref]

Abou-Khousa, M. A.

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

Ager, T. P.

T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
[Crossref]

Ahmad, F.

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

Ahmed, S. S.

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Verlag, 2014).

Allan, G.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Alvarez, Y.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

Amin, M. G.

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

M. G. Amin, Through-the-Wall Radar Imaging (CRC Press, 2016).

Arnitz, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Athale, C.

R. Eils and C. Athale, “Computational imaging in cell biology,” J. Cell Biol. 161, 477–481 (2003).
[Crossref]

Berkowitz, B.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Bohnert, R.

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

Bond, E. J.

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

Bowen, P. T.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Boyarsky, M.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.

Brady, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Brady, D. J.

Brunton, S. L.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
[Crossref]

Cafforio, C.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

Callow, H. J.

H. J. Callow, M. P. Hayes, and P. T. Gough, “Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry,” Electron. Lett. 38, 336–338 (2002).
[Crossref]

Carsenat, D.

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Chang, D.-C.

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

Chang, M. F.

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

Curlander, J. C.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).

Davis, S. K.

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

Decroze, C.

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Dehmollaian, M.

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

Depatla, S.

S. Depatla, C. R. Karanam, and Y. Mostofi, “Robotic through-wall imaging: radio-frequency imaging possibilities with unmanned vehicles,” IEEE Antennas Propag. Mag. 59(5), 47–60 (2017).
[Crossref]

Diebold, A. V.

Doerry, A. W.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Driscoll, T.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Dubbert, D. F.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Eils, R.

R. Eils and C. Athale, “Computational imaging in cell biology,” J. Cell Biol. 161, 477–481 (2003).
[Crossref]

Fang, G.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Fear, E. C.

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

Fortuny-Guasch, J.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

Fromenteze, T.

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

Fu, Q.

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

Fu, X.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Ghasr, M. T.

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

Gollub, J.

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.

Gollub, J. N.

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Gonzalez-Valdes, B.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Gough, P. T.

H. J. Callow, M. P. Hayes, and P. T. Gough, “Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry,” Electron. Lett. 38, 336–338 (2002).
[Crossref]

Gowda, V. R.

Gutierrez, V. D.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Hagness, S. C.

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Hayes, M. P.

H. J. Callow, M. P. Hayes, and P. T. Gough, “Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry,” Electron. Lett. 38, 336–338 (2002).
[Crossref]

Hirst, B.

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

Hirt, W.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[Crossref]

Hong, W.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Hoorfar, A.

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62, 459–462 (2014).
[Crossref]

Huang, Q.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Hunt, J.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Imani, M. F.

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.

L. Pulido-Mancera, M. F. Imani, and D. R. Smith, “Discrete dipole approximation for simulation of unusually tapered leaky wave antennas,” in IEEE MTT-S International Microwave Symposium (IMS) (2017), pp. 409–412.

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Johnson, M.

M. Johnson, “Opening satellite capacity to consumers with metamaterial antennas,” in Proceedings of the International Conference on Metamaterials, Photonic Crystals and Plasmonics (2016).

Johnson, M. C.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
[Crossref]

Kan, Y.

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

Karanam, C. R.

S. Depatla, C. R. Karanam, and Y. Mostofi, “Robotic through-wall imaging: radio-frequency imaging possibilities with unmanned vehicles,” IEEE Antennas Propag. Mag. 59(5), 47–60 (2017).
[Crossref]

Kassam, S. A.

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

Kharkovsky, S.

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

Kpré, E. L.

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Krieger, G.

G. Krieger, “Mimo-SAR: opportunities and pitfalls,” IEEE Trans. Geosci. Remote Sens. 52, 2628–2645 (2014).
[Crossref]

Kundtz, N.

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).

Kundtz, N. B.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
[Crossref]

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
[Crossref]

Las-Heras, F.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Li, X.

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

Li, Y.

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Liang, M.

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Liang, V.

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

Lipworth, G.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Liu, X.

Lopez-Sanchez, J. M.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

Lu, Y.-L.

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

Mantzavinos, S.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

Marks, D.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Marks, D. L.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

Martinez-Lorenzo, J.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Martinez-Lorenzo, J. A.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

McDonough, R. N.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Meaney, P. M.

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

Meng, H.

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Mostofi, Y.

S. Depatla, C. R. Karanam, and Y. Mostofi, “Robotic through-wall imaging: radio-frequency imaging possibilities with unmanned vehicles,” IEEE Antennas Propag. Mag. 59(5), 47–60 (2017).
[Crossref]

Mrozack, A.

Neifeld, M.

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Nickerson, M.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Ochs, S.

S. Ochs and W. Pitz, “The TerraSAR-X and Tandem-X satellites,” in 3rd International Conference on Recent Advances in Space Technologies (IEEE, 2007), pp. 294–298.

Odabasi, H.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

Okoniewski, M.

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Pedross-Engel, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Pitz, W.

S. Ochs and W. Pitz, “The TerraSAR-X and Tandem-X satellites,” in 3rd International Conference on Recent Advances in Space Technologies (IEEE, 2007), pp. 294–298.

Pommerenke, D.

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

Porcino, D.

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[Crossref]

Prati, C.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

Pulido-Mancera, L.

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

L. Pulido-Mancera, M. F. Imani, and D. R. Smith, “Discrete dipole approximation for simulation of unusually tapered leaky wave antennas,” in IEEE MTT-S International Microwave Symposium (IMS) (2017), pp. 409–412.

Pulido-Mancera, L. M.

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

Qi, Y.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Qu, L.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Rappaport, C.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

Rappaport, C. M.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Reynolds, M.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

Reynolds, M. S.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Rocca, F.

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

Rodriguez-Vaqueiro, Y.

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Rose, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

Sakamoto, T.

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

Sarabandi, K.

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

Schiessl, A.

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Schmidt, L. P.

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

Sleasman, T.

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” J. Opt. Soc. Am. B 33, 2082–2092 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, J. Gollub, and D. Smith, “Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies,” J. Opt. Soc. Am. B 33, 1098–1111 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

Sleasman, T. A.

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.

Smith, D.

Smith, D. R.

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture,” Appl. Opt. 57, 2142–2149 (2018).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, M. F. Imani, T. Fromenteze, J. N. Gollub, and D. R. Smith, “Single-frequency microwave imaging with dynamic metasurface apertures,” J. Opt. Soc. Am. B 34, 1713–1726 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, T. Fromenteze, A. Pedross-Engel, C. M. Watts, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Synthetic aperture radar with dynamic metasurface antennas: a conceptual development,” J. Opt. Soc. Am. A 34, A22–A36 (2017).
[Crossref]

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” J. Opt. Soc. Am. B 34, 2610–2623 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33, 899–912 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

T. Fromenteze, X. Liu, M. Boyarsky, J. Gollub, and D. R. Smith, “Phaseless computational imaging with a radiating metasurface,” Opt. Express 24, 16760–16776 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31, 2109–2119 (2014).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30, 1603–1612 (2013).
[Crossref]

L. Pulido-Mancera, M. F. Imani, and D. R. Smith, “Discrete dipole approximation for simulation of unusually tapered leaky wave antennas,” in IEEE MTT-S International Microwave Symposium (IMS) (2017), pp. 409–412.

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

Soumekh, M.

M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

Stuchly, M. A.

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Tan, W.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Tang, L.

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

Thompson, M.

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

Trofatter, K. P.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Trofatter, P.

Valayil, M.

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

Van der Weide, D. W.

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

Van Veen, B. D.

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wang, Y.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Watts, C. M.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wu, B.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Wu, Y.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Xin, H.

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

Xu, W.

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

Yaghjian, A. D.

A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
[Crossref]

Yarovoy, A.

X. Zhuge and A. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process. 21, 3026–3033 (2012).
[Crossref]

Yarovoy, A. G.

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

Yu, K.-W.

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

Yurduseven, O.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25, 27488–27505 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54, 9343–9353 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

Zhang, W.

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62, 459–462 (2014).
[Crossref]

Zhou, J.

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

Zhu, R.

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

Zhuge, X.

X. Zhuge and A. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process. 21, 3026–3033 (2012).
[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

Zoughi, R.

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

Zvolensky, T.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107, 204104 (2015).
[Crossref]

Electron. Lett. (1)

H. J. Callow, M. P. Hayes, and P. T. Gough, “Wavenumber domain reconstruction of SAR/SAS imagery using single transmitter and multiple-receiver geometry,” Electron. Lett. 38, 336–338 (2002).
[Crossref]

IEEE Access (2)

T. Fromenteze, E. L. Kpré, D. Carsenat, C. Decroze, and T. Sakamoto, “Single-shot compressive multiple-inputs multiple-outputs radar imaging using a two-port passive device,” IEEE Access 4, 1050–1060 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

IEEE Antennas Propag. Mag. (1)

S. Depatla, C. R. Karanam, and Y. Mostofi, “Robotic through-wall imaging: radio-frequency imaging possibilities with unmanned vehicles,” IEEE Antennas Propag. Mag. 59(5), 47–60 (2017).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (3)

M. Liang, Y. Li, H. Meng, M. Neifeld, and H. Xin, “Reconfigurable array design to realize principal component analysis (PCA)-based microwave compressive sensing imaging system,” IEEE Antennas Wireless Propag. Lett. 14, 1039–1042 (2015).
[Crossref]

L. M. Pulido-Mancera, T. Zvolensky, M. F. Imani, P. T. Bowen, M. Valayil, and D. R. Smith, “Discrete dipole approximation applied to highly directive slotted waveguide antennas,” IEEE Antennas Wireless Propag. Lett. 15, 1823–1826 (2016).
[Crossref]

T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith, “Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett. 15, 606–609 (2016).
[Crossref]

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

R. Zhu, J. Zhou, L. Tang, Y. Kan, and Q. Fu, “Frequency-domain imaging algorithm for single-input-multiple-output array,” IEEE Geosci. Remote Sens. Lett. 13, 1747–1751 (2016).
[Crossref]

IEEE Microwave Mag. (1)

E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, “Enhancing breast tumor detection with near-field imaging,” IEEE Microwave Mag. 3(1), 48–56 (2002).
[Crossref]

IEEE Microwave Wireless Compon. Lett. (1)

K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18/spl mu/m CMOS technology,” IEEE Microwave Wireless Compon. Lett. 14, 106–108 (2004).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (2)

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

C. Cafforio, C. Prati, and F. Rocca, “SAR data focusing using seismic migration techniques,” IEEE Trans. Aerosp. Electron. Syst. 27, 194–207 (1991).
[Crossref]

IEEE Trans. Antennas Propag. (10)

T. Sleasman, M. Boyarsky, L. Pulido-Mancera, T. Fromenteze, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Experimental synthetic aperture radar with dynamic metasurfaces,” IEEE Trans. Antennas Propag. 65, 6864–6877 (2017).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag. 63, 1881–1886 (2015).
[Crossref]

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Trans. Antennas Propag. 48, 728–737 (2000).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martinez-Lorenzo, F. Las-Heras, and C. M. Rappaport, “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Trans. Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, 30–45 (1986).
[Crossref]

W. Zhang and A. Hoorfar, “Three-dimensional synthetic aperture radar imaging through multilayered walls,” IEEE Trans. Antennas Propag. 62, 459–462 (2014).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, C. Rappaport, F. Las-Heras, and J. Martinez-Lorenzo, “Three-dimensional compressed sensing-based millimeter-wave imaging,” IEEE Trans. Antennas Propag. 63, 5868–5873 (2015).
[Crossref]

E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag. 51, 1690–1705 (2003).
[Crossref]

M. T. Ghasr, M. A. Abou-Khousa, S. Kharkovsky, R. Zoughi, and D. Pommerenke, “Portable real-time microwave camera at 24  GHz,” IEEE Trans. Antennas Propag. 60, 1114–1125 (2012).
[Crossref]

M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30  GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag. 61, 4733–4740 (2013).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (4)

G. Krieger, “Mimo-SAR: opportunities and pitfalls,” IEEE Trans. Geosci. Remote Sens. 52, 2628–2645 (2014).
[Crossref]

X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens. 49, 509–518 (2011).
[Crossref]

M. Dehmollaian and K. Sarabandi, “Refocusing through building walls using synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens. 46, 1589–1599 (2008).
[Crossref]

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

IEEE Trans. Image Process. (1)

X. Zhuge and A. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process. 21, 3026–3033 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (4)

X. Li, S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Trans. Microwave Theory Tech. 52, 1856–1865 (2004).
[Crossref]

S. S. Ahmed, A. Schiessl, and L. P. Schmidt, “A novel fully electronic active real-time imager based on a planar multistatic sparse array,” IEEE Trans. Microwave Theory Tech. 59, 3567–3576 (2011).
[Crossref]

Y. Alvarez, Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdes, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Fourier-based imaging for multistatic radar systems,” IEEE Trans. Microwave Theory Tech. 62, 1798–1810 (2014).
[Crossref]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microwave Theory Tech. 49, 1581–1592 (2001).
[Crossref]

J. Cell Biol. (1)

R. Eils and C. Athale, “Computational imaging in cell biology,” J. Cell Biol. 161, 477–481 (2003).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (4)

Oceanography (1)

T. P. Ager, “An introduction to synthetic aperture radar imaging,” Oceanography 26, 20–33 (2013).
[Crossref]

Opt. Express (2)

Phys. Rev. B (1)

L. Pulido-Mancera, P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, “Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling,” Phys. Rev. B 96, 235402 (2017).

Proc. SPIE (1)

M. Boyarsky, T. Sleasman, L. Pulido-Mancera, M. F. Imani, M. S. Reynolds, and D. R. Smith, “Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna,” Proc. SPIE 10189, 101890H (2017).
[Crossref]

Prog. Electromagn. Res. (3)

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3D bistatic omega-K imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. Electromagn. Res. 121, 409–431 (2011).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagn. Res. 150, 97–107 (2015).
[Crossref]

H. Odabasi, M. F. Imani, G. Lipworth, J. Gollub, and D. R. Smith, “Investigation of alignment errors on multi-static microwave imaging based on frequency-diverse metamaterial apertures,” Prog. Electromagn. Res. 70, 101–112 (2016).
[Crossref]

Sci. Rep. (1)

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref]

Science (2)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339, 310–313 (2013).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Other (12)

M. G. Amin, Through-the-Wall Radar Imaging (CRC Press, 2016).

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Verlag, 2014).

A. W. Doerry, D. F. Dubbert, M. Thompson, and V. D. Gutierrez, “A portfolio of fine resolution Ka-band SAR images: part I,” in Defense and Security (International Society for Optics and Photonics, 2005), pp. 13–24.

S. Ochs and W. Pitz, “The TerraSAR-X and Tandem-X satellites,” in 3rd International Conference on Recent Advances in Space Technologies (IEEE, 2007), pp. 294–298.

M. Soumekh, Synthetic Aperture Radar Signal Processing (Wiley, 1999).

A. Pedross-Engel, D. Arnitz, J. N. Gollub, O. Yurduseven, K. P. Trofatter, M. F. Imani, T. Sleasman, M. Boyarsky, X. Fu, D. Marks, D. R. Smith, and M. S. Reynolds, “Orthogonal coded active illumination for millimeter wave, massive-MIMO computational imaging with metasurface antennas,” IEEE Trans. Comput. Imaging, doi: 10.1109/TCI.2018.2808762. (to be published).
[Crossref]

T. Fromenteze, M. Boyarsky, J. Gollub, T. Sleasman, M. F. Imani, and D. R. Smith, “Single-frequency near-field MIMO imaging,” in 11th European Conference on Antennas and Propagation (EuCAP), Paris, France (2017), pp. 1415–1418.

T. A. Sleasman, M. F. Imani, M. Boyarsky, J. Gollub, and D. R. Smith, “Reconfigurable metasurface apertures for computational imaging,” in Mathematics in Imaging (Optical Society of America, 2017), paper MM2C.4.

L. Pulido-Mancera, M. F. Imani, and D. R. Smith, “Discrete dipole approximation for simulation of unusually tapered leaky wave antennas,” in IEEE MTT-S International Microwave Symposium (IMS) (2017), pp. 409–412.

J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar (Wiley, 1991).

M. Soumekh, Fourier Array Imaging (Prentice-Hall, 1994).

M. Johnson, “Opening satellite capacity to consumers with metamaterial antennas,” in Proceedings of the International Conference on Metamaterials, Photonic Crystals and Plasmonics (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Conceptual diagram of a single-frequency imaging system using metasurface antennas. One metasurface antenna serves as the transmitter while another receives the backscattered signal. At each synthetic aperture position, measurements are taken by cycling through combinations of spatially diverse radiation patterns on the transmitter and receiver.
Fig. 2.
Fig. 2. Schematic description of two styles of microwave imaging systems. (a) Monostatic SAR system covering an area in k space function of SAR position and frequency ( B is the spectral bandwidth). (b) Multistatic array covering an area in k space as a function of the transmit and receive aperture size, while only using a single frequency point.
Fig. 3.
Fig. 3. Diagram of the illumination strategy for a single-frequency, metasurface antenna imaging system. The metasurfaces measure the scene by cycling through combinations of transmit and receive radiation patterns (each aperture is set with a tuning state, T n ). This process is repeated at each synthetic aperture position as the metasurfaces are moved together, with the synthetic aperture path oriented along the z direction. Note that the transmitter and receiver do not necessarily apply the same tuning state during a given measurement.
Fig. 4.
Fig. 4. Experimental setup consisting of two metasurface apertures. One is used as a transmitter (labeled Tx) and the other as a receiver (labeled Rx).
Fig. 5.
Fig. 5. Diagram of the metasurface aperture. The aperture has three feeds, which generate a total of four propagating waveguides within the microstrip, shown with the blue arrows.
Fig. 6.
Fig. 6. 3D image reconstruction of simulated measurements of a point scatterer. The target is well-resolved in all three directions with measurements at a single frequency.
Fig. 7.
Fig. 7. 3D image reconstruction of experimental measurements of a point scatterer. Here, a metallic marble of diameter 1.75 cm is used as target and is well-resolved in all three directions with measurements at a single frequency.
Fig. 8.
Fig. 8. Experimental PSF with 64 transmit masks, 64 receive masks, and a single frequency (19.03 GHz). Cross sections are plotted with a linear colormap.
Fig. 9.
Fig. 9. Experimental PSF with 16 transmit masks, 16 receive masks, and 16 frequency points, spanning 17.68–19.03 GHz. Cross sections are plotted with a linear colormap.
Fig. 10.
Fig. 10. Experimental PSF with 64 transmit masks, 64 receive masks, and 16 frequency points, spanning 17.68–19.03 GHz. Cross sections are plotted with a linear colormap.
Fig. 11.
Fig. 11. Reconstructed 3D image of four copper cylinders with approximate diameter 2 cm and length of 10 cm.
Fig. 12.
Fig. 12. Reconstructed 3D image of a cylinder of diameter 15 cm and height 70 cm.
Fig. 13.
Fig. 13. Single-frequency SAR images of a large cylinder at five different frequency points.
Fig. 14.
Fig. 14. Reconstructions of four metallic cylinders. Each image uses a different number of transmit/receive tuning states, N T , resulting in N T 2 N s total measurements ( N s is the number of synthetic aperture positions).

Tables (1)

Tables Icon

Table 1. Resolution of Single-Frequency and Bandwidth Imaging Cases a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S ( T t , T r , z s ) S T ( y t , y r , z s ) .
S T = V σ ( x , y , z ) e j k R t e j k R r d V ,
R t = x 2 + ( y y t ) 2 + ( z z t ) 2 R r = x 2 + ( y y r ) 2 + ( z z r ) 2 .
S ^ T = V σ y t z t e j k R t e j k y t y t e j k z t z t y r z r e j k R r e j k y r y r e j k z r z r d z r d y r d z t d y t d V .
y t z t e j ( k R t + k y t y t + k z t z t ) d y t d z t .
y t , s = y ± k y t x k 2 k y t 2 k z t 2 ,
z t , s = z ± k z t x k 2 k y t 2 k z t 2 .
e j ( k 2 k y t 2 k z t 2 x + k y t y + k z t z ) .
e j ( k 2 k y r 2 k z r 2 x + k y r y + k z r z ) .
S ^ T = V σ e j ( k 2 k y t 2 k z t 2 x + k y t y + k z t z ) e j ( k 2 k y r 2 k z r 2 x + k y r y + k z r z ) d V .
S ^ T = V σ e j ( k x x + k y y + k z z ) d V ,
k x = k x t + k x r = k 2 k y t 2 k z t 2 + k 2 k y r 2 k z r 2 ,
k y = k y t + k y r ,
k z = k z t + k z r .
S * = S e j ( k x x c , t + k y y c , t + k z z c , t ) , S * = S e j ( k x x c , r + k y y c , r + k z z c , r ) .

Metrics