Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fringe projection system for high-temperature workpieces–design, calibration, and measurement

Not Accessible

Your library or personal account may give you access

Abstract

In the Collaborative Research Centre 1153, Tailored Forming, the geometry of hot measurement objects needs to be captured quickly, areally, and with high precision. The documentation of the hybrid components’ shrinkage behavior directly after the forming process can yield insight into the development of residual stresses. In this paper, we present a fringe projection measurement setup designed for the topography measurement of high-temperature steel shafts, comprising two cameras with different lenses and a projector. In order to separate the measurement signal from light by self-radiation, a green bandpass filter is installed in front of the measurement camera’s sensor. The optical sensors are protected from the measurement object’s temperature and possible scale by a glass panel and a working distance of at least 250 mm. High-resolution measurements are guaranteed due to a telecentric measurement camera and a triangulation angle of about 30°. The triangulation angle requires an additional entocentric calibration camera to provide a highly accurate projector model estimation. Special attention is therefore devoted to the developed calibration routine, the glass panel effect, and the applied distortion models. The quality of the calibration routine is validated by a reference sphere measurement. Furthermore, the geometry data of a red-glowing heating rod (approximately 1020°C) is acquired to demonstrate the performance of the presented system. In future applications, the presented setup will be used with a force-controlled clamping unit to enable secure and position stable topography acquisition of hot measurement objects.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Flexible calibration method for telecentric fringe projection profilometry systems

Li Rao, Feipeng Da, Weiqi Kong, and Heming Huang
Opt. Express 24(2) 1222-1237 (2016)

Calibration method for projector-camera-based telecentric fringe projection profilometry system

Haibo Liu, Huijing Lin, and Linshen Yao
Opt. Express 25(25) 31492-31508 (2017)

Flexible and accurate system calibration method in microscopic fringe projection profilometry

Junlin Du, Xiaopeng Luo, Jiangping Zhu, Shiyong An, and Pei Zhou
Appl. Opt. 63(2) 383-389 (2024)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (24)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved