Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid method to estimate two-layered superficial tissue optical properties from simulated data of diffuse reflectance spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

An iterative curve fitting method has been applied in both simulation [J. Biomed. Opt. 17, 107003 (2012) [CrossRef]  ] and phantom [J. Biomed. Opt. 19, 077002 (2014) [CrossRef]  ] studies to accurately extract optical properties and the top layer thickness of a two-layered superficial tissue model from diffuse reflectance spectroscopy (DRS) data. This paper describes a hybrid two-step parameter estimation procedure to address two main issues of the previous method, including (1) high computational intensity and (2) converging to local minima. The parameter estimation procedure contained a novel initial estimation step to obtain an initial guess, which was used by a subsequent iterative fitting step to optimize the parameter estimation. A lookup table was used in both steps to quickly obtain reflectance spectra and reduce computational intensity. On simulated DRS data, the proposed parameter estimation procedure achieved high estimation accuracy and a 95% reduction of computational time compared to previous studies. Furthermore, the proposed initial estimation step led to better convergence of the following fitting step. Strategies used in the proposed procedure could benefit both the modeling and experimental data processing of not only DRS but also related approaches such as near-infrared spectroscopy.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Modelling spatially-resolved diffuse reflectance spectra of a multi-layered skin model by artificial neural networks trained with Monte Carlo simulations

Sheng-Yang Tsui, Chiao-Yi Wang, Tsan-Hsueh Huang, and Kung-Bin Sung
Biomed. Opt. Express 9(4) 1531-1544 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved