Abstract

This work shrinks down the size of Ge-on-Si photodetectors to reduce the dark current and maintain the optical responsivity by surrounding photonic crystals. Numerical simulation shows that the employment of photonic crystal in the Si slab effectively prohibits the radiation modes from those guided outgoing waves and facilitates light cyclic absorption in the epitaxial Ge region. A photodetector with a 5 μm long Ge absorption region is demonstrated with a dark current of 150 nA (1 μA up to 70°C), a 3 dB bandwidth of 17 GHz, and a responsivity of 0.75 A/W.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a vertical pin Ge-on-Si photo-detector on a wet-etched Si recess

Qing Fang, Lianxi Jia, Junfeng Song, Andy E. J. Lim, Xiaoguang Tu, Xianshu Luo, Mingbin Yu, and Guoqiang Lo
Opt. Express 21(20) 23325-23330 (2013)

Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction

Léopold Virot, Daniel Benedikovic, Bertrand Szelag, Carlos Alonso-Ramos, Bayram Karakus, Jean-Michel Hartmann, Xavier Le Roux, Paul Crozat, Eric Cassan, Delphine Marris-Morini, Charles Baudot, Frédéric Boeuf, Jean-Marc Fédéli, Christophe Kopp, and Laurent Vivien
Opt. Express 25(16) 19487-19496 (2017)

High performance, waveguide integrated Ge photodetectors

Donghwan Ahn, Ching-yin Hong, Jifeng Liu, Wojciech Giziewicz, Mark Beals, Lionel C. Kimerling, Jurgen Michel, Jian Chen, and Franz X. Kärtner
Opt. Express 15(7) 3916-3921 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17, 7901–7906 (2009).
    [Crossref]
  2. J. Michel, J. F. Liu, and L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
    [Crossref]
  3. J. Wang and S. J. Lee, “Ge-photodetector for Si-based optoelectronic integration,” Sensors 11, 696–718 (2011).
    [Crossref]
  4. K. W. Ang, G. Q. Lo, and D. L. Kwong, “Germanium photodetector technologies for optical communication applications,” in Semiconductor Technologies, J. Grym, ed. (2010), pp. 373–406.
  5. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
    [Crossref]
  6. L. Vivien, M. Rouviere, J. M. Fedeli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. E. Melhaoui, E. Cassan, X. L. Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide,” Opt. Express 15, 9843–9848 (2007).
    [Crossref]
  7. Q. Fang, L. X. Jia, J. F. Song, A. E. J. Lim, X. G. Tu, X. S. Luo, M. B. Yu, and G. Q. Lo, “Demonstration of a vertical pin Ge-on-Si photodetector on a wet-etched Si recess,” Opt. Express 21, 23325–23330 (2013).
    [Crossref]
  8. G. L. Li, Y. Luo, X. Z. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS compatible germanium photodetectors,” Opt. Express 20, 26345–26350 (2012).
    [Crossref]
  9. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
    [Crossref]
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  11. A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
    [Crossref]

2014 (1)

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (1)

J. Wang and S. J. Lee, “Ge-photodetector for Si-based optoelectronic integration,” Sensors 11, 696–718 (2011).
[Crossref]

2010 (2)

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

J. Michel, J. F. Liu, and L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

2009 (1)

2007 (1)

2000 (1)

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[Crossref]

Ang, K. W.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

K. W. Ang, G. Q. Lo, and D. L. Kwong, “Germanium photodetector technologies for optical communication applications,” in Semiconductor Technologies, J. Grym, ed. (2010), pp. 373–406.

Cassan, E.

Chen, K. K.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Chen, L.

Chutinan, A.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[Crossref]

Crozat, P.

Cunningham, J. E.

Damlencourt, J. F.

Duan, N.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Fang, Q.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Q. Fang, L. X. Jia, J. F. Song, A. E. J. Lim, X. G. Tu, X. S. Luo, M. B. Yu, and G. Q. Lo, “Demonstration of a vertical pin Ge-on-Si photodetector on a wet-etched Si recess,” Opt. Express 21, 23325–23330 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

Fedeli, J. M.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Jia, L. X.

Kimerling, L. C.

J. Michel, J. F. Liu, and L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Krishnamoorthy, A. V.

Kwong, D. L.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

K. W. Ang, G. Q. Lo, and D. L. Kwong, “Germanium photodetector technologies for optical communication applications,” in Semiconductor Technologies, J. Grym, ed. (2010), pp. 373–406.

Laval, S.

Lee, S. J.

J. Wang and S. J. Lee, “Ge-photodetector for Si-based optoelectronic integration,” Sensors 11, 696–718 (2011).
[Crossref]

Li, C.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Li, G. L.

Lim, A. E. J.

Lim, A. E.-J.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Liow, T. Y.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

Lipson, M.

Liu, J. F.

J. Michel, J. F. Liu, and L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Lo, G. Q.

Q. Fang, L. X. Jia, J. F. Song, A. E. J. Lim, X. G. Tu, X. S. Luo, M. B. Yu, and G. Q. Lo, “Demonstration of a vertical pin Ge-on-Si photodetector on a wet-etched Si recess,” Opt. Express 21, 23325–23330 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

K. W. Ang, G. Q. Lo, and D. L. Kwong, “Germanium photodetector technologies for optical communication applications,” in Semiconductor Technologies, J. Grym, ed. (2010), pp. 373–406.

Luo, X. S.

Luo, Y.

Mangeney, J.

Marris-Morini, D.

Masini, G.

Mekis, A.

Melhaoui, L. E.

Michel, J.

J. Michel, J. F. Liu, and L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Noda, S.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[Crossref]

Pascal, D.

Raj, K.

Rouviere, M.

Roux, X. L.

Sahni, S.

Shubin, I.

Song, J. F.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Q. Fang, L. X. Jia, J. F. Song, A. E. J. Lim, X. G. Tu, X. S. Luo, M. B. Yu, and G. Q. Lo, “Demonstration of a vertical pin Ge-on-Si photodetector on a wet-etched Si recess,” Opt. Express 21, 23325–23330 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tern, R. P.-C.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Thacker, H.

Tu, X. G.

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

Q. Fang, L. X. Jia, J. F. Song, A. E. J. Lim, X. G. Tu, X. S. Luo, M. B. Yu, and G. Q. Lo, “Demonstration of a vertical pin Ge-on-Si photodetector on a wet-etched Si recess,” Opt. Express 21, 23325–23330 (2013).
[Crossref]

Vivien, L.

Wang, J.

J. Wang and S. J. Lee, “Ge-photodetector for Si-based optoelectronic integration,” Sensors 11, 696–718 (2011).
[Crossref]

Xiong, Y. Z.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

Yao, J.

Yu, M. B.

Q. Fang, L. X. Jia, J. F. Song, A. E. J. Lim, X. G. Tu, X. S. Luo, M. B. Yu, and G. Q. Lo, “Demonstration of a vertical pin Ge-on-Si photodetector on a wet-etched Si recess,” Opt. Express 21, 23325–23330 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

Zheng, X. Z.

IEEE J. Sel. Top. Quantum Electron. (1)

A. E.-J. Lim, J. F. Song, Q. Fang, C. Li, X. G. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T. Y. Liow, “Review of silicon photonics Foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).
[Crossref]

J. Sel. Top. Quantum Electron. (1)

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” J. Sel. Top. Quantum Electron. 16, 307–315 (2010).
[Crossref]

Nat. Photonics (1)

J. Michel, J. F. Liu, and L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4, 527–534 (2010).
[Crossref]

Opt. Express (4)

Phys. Rev. B (1)

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[Crossref]

Sensors (1)

J. Wang and S. J. Lee, “Ge-photodetector for Si-based optoelectronic integration,” Sensors 11, 696–718 (2011).
[Crossref]

Other (2)

K. W. Ang, G. Q. Lo, and D. L. Kwong, “Germanium photodetector technologies for optical communication applications,” in Semiconductor Technologies, J. Grym, ed. (2010), pp. 373–406.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematics of the PC-surrounded PD, in which passivation layers are not shown.
Fig. 2.
Fig. 2. (a) Dispersion curves under the PC slab light cone and PBGs for the case of a=420  nm and r=115  nm. By compressing the lower PBG in (a) horizontally to a vertical line, a reduced band structure representing the change of PBG against hole radius is obtained in (b). The lines are intentionally separated by 1 nm for visualization purpose.
Fig. 3.
Fig. 3. Snapshots of field evolution in PDs (left) with and (right) without PC simulated by using the FDTD method. The upper and lower panels are for the central y-cut and x-cut planes of the PC slab, respectively. All the panels are normalized to the excitation power and captured at the same time step.
Fig. 4.
Fig. 4. Time-varying absorption in Ge under continuous-wave excitation.
Fig. 5.
Fig. 5. SEM images captured after finishing the front-end process. The lateral dimension of the Ge bottom is 5 μm.
Fig. 6.
Fig. 6. I-V characteristics of photodetectors (a) with different active region lengths and (b) at temperatures ranging from 21°C to 78°C.
Fig. 7.
Fig. 7. Electrical bandwidth against (a) biasing voltage and (b) the length of Ge absorption region.
Fig. 8.
Fig. 8. (a) Layout of a PD and a reference coupling structure for power calibration; (b) responsivity of the 5 μm long PD with surrounding PC holes.

Metrics