Abstract

We investigate the formation and evolution of plasmon-induced absorption (PIA) effect in a three-dimensional graphene waveguide structure. The PIA window is formed by near-field coupling of the graphene edge mode, the extremely destructive interference between the radiative mode and sub-radiative mode of graphene nanoribbons. The resonance intensity has a significant dependence on the coupling distance between the graphene nanoribbons. At the same time, it is particularly sensitive to the refractive index of the environment, which is promising for sensing devices. In addition, the resonant wavelength can be actively controlled by changing the Fermi energy of graphene. Moreover, it can be seen that the group time delay of the PIA window reaches 0.28  ps, which is a good candidate for ultrafast light application. Finally, additional graphene nanoribbons can also form a double-channel PIA window. Our work may provide an excellent platform for controlling the optical transmission of highly integrated plasmonic components.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide

Qi Lin, Xiang Zhai, Yi Su, Haiyu Meng, and Lingling Wang
Appl. Opt. 56(34) 9536-9541 (2017)

Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide

Lin Wang, Wei Li, and Xunya Jiang
Opt. Lett. 40(10) 2325-2328 (2015)

Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals

Huan Chen, Huiyun Zhang, Maodong Liu, Yunkun Zhao, Xiaohan Guo, and Yuping Zhang
Opt. Mater. Express 7(9) 3397-3407 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription