Abstract

We conclude our series of publications on the development of the gradient correlation method (GCM), which can be used for an improved stabilization of the solution space of particle microphysical parameters derived from measurements with multiwavelength Raman and high-spectral-resolution lidar (3 backscatter +2 extinction coefficients). We show results of three cases studies. The data were taken with a ground-based multiwavelength Raman lidar during the Saharan Mineral Dust Experiment in the Cape Verde Islands (North Atlantic). These cases describe mixtures of dust with smoke. For our data analysis we separated the contribution of smoke to the total signal and only used these optical profiles for the test of GCM. The results show a significant stabilization of the solution space of the particle microphysical parameter retrieval on the particle radius domain from 0.03 to 10 μm, the real part of the complex refractive index domain from 1.3 to 1.8, and the imaginary part from 0 to 0.1. This new method will be included in the Tikhonov Advanced Regularization Algorithm, which is a fully automated, unsupervised algorithm that is used for the analysis of data collected with the worldwide first airborne 3 backscatter +2 extinction high-spectral-resolution lidar developed by NASA Langley Research Center.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory

Alexei Kolgotin, Detlef Müller, Eduard Chemyakin, and Anton Romanov
Appl. Opt. 55(34) 9839-9849 (2016)

Vertical profiles of pure dust and mixed smoke–dust plumes inferred from inversion of multiwavelength Raman/polarization lidar data and comparison to AERONET retrievals and in situ observations

Detlef Müller, Igor Veselovskii, Alexei Kolgotin, Matthias Tesche, Albert Ansmann, and Oleg Dubovik
Appl. Opt. 52(14) 3178-3202 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
    [Crossref]
  2. A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data,” Appl. Opt. 55, 9850–9865 (2016).
    [Crossref]
  3. M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
    [Crossref]
  4. M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
    [Crossref]
  5. C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  6. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
    [Crossref]
  7. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
    [Crossref]
  8. C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518–528 (2005).
    [Crossref]
  9. D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997).
    [Crossref]
  10. E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
    [Crossref]
  11. A. Doicu, T. Trautmann, and F. Schreier, Numerical Regularization for Atmospheric Inverse Problems (Springer, 2010).
  12. S. Twomey, ed., Introduction to the Mathematics of Inversion in Remote Sensing and Direct Measurements (Elsevier, 1977).
  13. A. N. Tikhonov and V. Y. Arsenin, eds., Solution of Ill-Posed Problems (Wiley, 1977).
  14. I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
    [Crossref]
  15. D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
    [Crossref]
  16. A. Kolgotin, E. Chemyakin, A. Romanov, and D. Müller, “Influence of the uncertainty of the imaginary part of the refractive index on the retrieval accuracy of particle scattering and absorption coefficients and single scattering albedo: numerical simulations for the case of multiwavelength Raman lidar data,” Proceedings of ILRC, Porto Heli, Greece, 26June, 2012, pp. 269–272.
  17. J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
    [Crossref]
  18. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1043–1050 (1998).
    [Crossref]

2016 (2)

2014 (2)

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

2013 (1)

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

2011 (1)

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

2009 (1)

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

2005 (2)

2002 (1)

1999 (1)

1998 (1)

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1043–1050 (1998).
[Crossref]

1997 (1)

Ackermann, J.

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1043–1050 (1998).
[Crossref]

Althausen, D.

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Ansmann, A.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

Berg, L. K.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Böckmann, C.

Burton, S.

Burton, S. P.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Carswell, A. I.

Chaikovsky, A.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

Chemyakin, E.

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

A. Kolgotin, E. Chemyakin, A. Romanov, and D. Müller, “Influence of the uncertainty of the imaginary part of the refractive index on the retrieval accuracy of particle scattering and absorption coefficients and single scattering albedo: numerical simulations for the case of multiwavelength Raman lidar data,” Proceedings of ILRC, Porto Heli, Greece, 26June, 2012, pp. 269–272.

Cleckner, C. S.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Cook, A. L.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Doicu, A.

A. Doicu, T. Trautmann, and F. Schreier, Numerical Regularization for Atmospheric Inverse Problems (Springer, 2010).

Donovan, D. P.

Dubovik, O.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

Engelmann, R.

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Ferrare, R.

Ferrare, R. A.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Freudenthaler, V.

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Griaznov, V.

Groß, S.

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Hair, J. W.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Hare, R. W.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Harper, D. B.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Hostetler, C.

Hostetler, C. A.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Kolgotin, A.

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

A. Kolgotin, E. Chemyakin, A. Romanov, and D. Müller, “Influence of the uncertainty of the imaginary part of the refractive index on the retrieval accuracy of particle scattering and absorption coefficients and single scattering albedo: numerical simulations for the case of multiwavelength Raman lidar data,” Proceedings of ILRC, Porto Heli, Greece, 26June, 2012, pp. 269–272.

Miranova, I.

Müller, D.

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

C. Böckmann, I. Miranova, D. Müller, L. Scheidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518–528 (2005).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

A. Kolgotin, E. Chemyakin, A. Romanov, and D. Müller, “Influence of the uncertainty of the imaginary part of the refractive index on the retrieval accuracy of particle scattering and absorption coefficients and single scattering albedo: numerical simulations for the case of multiwavelength Raman lidar data,” Proceedings of ILRC, Porto Heli, Greece, 26June, 2012, pp. 269–272.

Nessler, R.

Obland, M. D.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Petzold, A.

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

Rogers, R. R.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Romanov, A.

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

A. Kolgotin, E. Chemyakin, A. Romanov, and D. Müller, “Influence of the uncertainty of the imaginary part of the refractive index on the retrieval accuracy of particle scattering and absorption coefficients and single scattering albedo: numerical simulations for the case of multiwavelength Raman lidar data,” Proceedings of ILRC, Porto Heli, Greece, 26June, 2012, pp. 269–272.

Scheidenbach, L.

Schmid, B.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Schreier, F.

A. Doicu, T. Trautmann, and F. Schreier, Numerical Regularization for Atmospheric Inverse Problems (Springer, 2010).

Schwarz, A.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

Seifert, P.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

Tesche, M.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

Tomlinson, J.

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

Trautmann, T.

A. Doicu, T. Trautmann, and F. Schreier, Numerical Regularization for Atmospheric Inverse Problems (Springer, 2010).

Veira, A.

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

Veselovskii, I.

Wagner, J.

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

Wandinger, U.

Weinzierl, B.

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

Whiteman, D.

Whiteman, D. N.

Appl. Opt. (7)

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory,” Appl. Opt. 55, 9839–9849 (2016).
[Crossref]

A. Kolgotin, D. Müller, E. Chemyakin, and A. Romanov, “Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data,” Appl. Opt. 55, 9850–9865 (2016).
[Crossref]

D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36, 9406–9424 (1997).
[Crossref]

E. Chemyakin, D. Müller, S. Burton, A. Kolgotin, C. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346–2357 (1999).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41, 3685–3699 (2002).
[Crossref]

I. Veselovskii, A. Kolgotin, D. Müller, and D. N. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).
[Crossref]

Atmos. Meas. Tech. (2)

D. Müller, C. A. Hostetler, R. A. Ferrare, S. P. Burton, E. Chemyakin, A. Kolgotin, J. W. Hair, A. L. Cook, D. B. Harper, R. R. Rogers, R. W. Hare, C. S. Cleckner, M. D. Obland, J. Tomlinson, L. K. Berg, and B. Schmid, “Airborne multiwavelength high spectral resolution lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US,” Atmos. Meas. Tech. 7, 3487–3496 (2014).
[Crossref]

J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the lidar/radiometer inversion code (LIRIC) to determine microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).
[Crossref]

J. Atmos. Ocean. Technol. (1)

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1043–1050 (1998).
[Crossref]

J. Geophys. Res. (1)

M. Tesche, A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, “Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res. 114, D13202 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Tellus (1)

M. Tesche, D. Müller, S. Groß, A. Ansmann, D. Althausen, V. Freudenthaler, B. Weinzierl, A. Veira, and A. Petzold, “Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements,” Tellus 63B, 677–694 (2011).
[Crossref]

Other (5)

C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (Wiley, 1983).

A. Doicu, T. Trautmann, and F. Schreier, Numerical Regularization for Atmospheric Inverse Problems (Springer, 2010).

S. Twomey, ed., Introduction to the Mathematics of Inversion in Remote Sensing and Direct Measurements (Elsevier, 1977).

A. N. Tikhonov and V. Y. Arsenin, eds., Solution of Ill-Posed Problems (Wiley, 1977).

A. Kolgotin, E. Chemyakin, A. Romanov, and D. Müller, “Influence of the uncertainty of the imaginary part of the refractive index on the retrieval accuracy of particle scattering and absorption coefficients and single scattering albedo: numerical simulations for the case of multiwavelength Raman lidar data,” Proceedings of ILRC, Porto Heli, Greece, 26June, 2012, pp. 269–272.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Experimental data taken on 31 January 2008. (a) Backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. (b) BAE, EAE, and LRs. (c)–(f) Retrieved PMP (effective radius, number, surface-area, and colume concentration), CRI (real and imaginary part), and PSD. The results were obtained without the use of GCM (NoGCM, triangle), with the use of GCM under the assumption that the PSDs are monomodal (MMS, squares) or bimodal (BMS, diamonds). We used the value a s = 1.6 . The asterisks denote the results from our proximate estimation of the fine-mode parameters. The stars describe the results of the CRI of the fine-mode particles. We obtained these results from combining PA with the results for effective radius. Effective radius was obtained from using GCM.
Fig. 2.
Fig. 2. Statistics of the experimental data (EAE and extinction coefficient at 355 nm) and the PMPs for the measurement case from 31 January 2008. The results were obtained without the use of GCM (NoGCM, triangles), and with the use of GCM and the assumption that the PSDs are monomodal (MMS, squares) or bimodal (BMS, diamonds), respectively. We used the value a s = 1.6 . The solid lines describe the correlation trends according to the equation y = a x + b . Information on the regression parameters and the correlation coefficient R 2 is given in the legends of each subfigure.
Fig. 3.
Fig. 3. Measurement case from 3 February 2008. The meaning of the lines, symbols, and colors is the same as in Fig. 1.
Fig. 4.
Fig. 4. Measurement case from 3 February 2008. The meaning of the lines, symbols, and colors is the same as in Fig. 1.
Fig. 5.
Fig. 5. Effective radius (extracted from our reference LUT) versus measured EAE (3 February 2008) at height bins l = 2 (triangles), 3 (squares), and 4 (diamonds). We show the data points ( r eff ) that are located in the vicinity of the minimal discrepancy ρ LUT , min = ρ LUT , f . Parameters of the regression analysis are shown in the legend.
Fig. 6.
Fig. 6. Measurement case from 22 January 2008. The meaning of the lines, symbols, and colors is the same as in Fig. 1.
Fig. 7.
Fig. 7. Measurement case from 22 January 2008. The meaning of the lines, symbols, and colors is the same as in Fig. 1.
Fig. 8.
Fig. 8. Results for PSDs in different height levels. The PSDs were obtained from using GCM. Results are shown for the measurements taken on (a) 31 January 2008, (b) 3 February 2008, and (c) 22 January 2008.
Fig. 9.
Fig. 9. Statistics of the imaginary part of the CRI versus LR at 355 nm. We show the results we obtained from (a) the LUT and (b) the simulated vertical profiles type 1 (bimodal case) and type 2 (monomodal case) as described in [2] (black circles) and the three measurements: 31 January 2008 (green), 3 February 2008 (pink), and 22 January 2008 (gray).

Tables (11)

Tables Icon

Table 1. Number of Aerosol Cases Presented in Table 1 of [1] Versus Height Bin Number l and Date of Measurement

Tables Icon

Table 2. Measurement from 31 January, 2008 a

Tables Icon

Table 3. Measurement from 31 January 2008 a

Tables Icon

Table 4. Measurement from 31 January 2008 a

Tables Icon

Table 5. Measurement from 3 February 2008 a

Tables Icon

Table 6. Measurement from 3 February 2008 a

Tables Icon

Table 7. Measurement from 3 February 2008 a

Tables Icon

Table 8. Measurement from 22 January 2008 a

Tables Icon

Table 9. Measurement from 22 January 2008 a

Tables Icon

Table 10. Measurement from 22 January 2008 a

Tables Icon

Table 11. Retrieval Results of All Three Measurements for the Case of Monomodal PSDs Based on the Combined Use of PA and GCM

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

r min ( l ) r max ( l ) K g ( λ , m ( l ) , r ) f ( l ) ( r ) d r = g ( l ) ( λ ) , l = 1 , , N L ; g = α , β ,
| [ a p α ( l ) ( 355 ) + b p ] p j ( l ) | < δ p p = s , v / r eff , n ( r mean 2 + σ 2 ) ,
| [ a p a ˚ α ( l ) + b r ] p j ( l ) | < δ p p = r eff ,
| [ a p r eff , j ( l ) + b p ] p j ( l ) | < δ p p = r mean , σ .
r [ 0.03 , 10 ] ,
m R [ 1.325 , 1.8 ] ,
m I [ 0.0 , 0.1 ] .
ρ LUT = 1 6 p ρ p , p = a ˚ α , a ˚ β ( 355 ) , β ( 532 ) , a ˚ β ( 532 ) , β ( 1064 ) , α ( 355 ) β ( 355 ) , α ( 355 ) β ( 355 ) , r eff ,
ρ p = | p LUT p experiment | / p LUT × 100 %
y = 0.11 x + 0.35 ,
r eff ϕ α ( 355 ) r eff , f + [ 1 ϕ α ( 355 ) ] r eff , c .

Metrics