Abstract

We report on a 2×2 array of radio-frequency atomic magnetometers in a magnetic induction tomography configuration. Active detection, localization, and real-time tracking of conductive, nonmagnetic targets are demonstrated in air and saline water. Penetration in different media and detection are achieved thanks to the sensitivity and tunability of the sensors, and to the active nature of magnetic induction probing. We obtained a 100% success rate for automatic detection and a 93% success rate for automatic localization in air and water, up to 190 mm away from the sensor plane (100 mm underwater). We anticipate magnetic induction tomography with arrays of atomic magnetometers finding applications in civil engineering and maintenance, the oil and gas industry, geological surveys, marine science, archeology, search and rescue, and security and surveillance.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Through-barrier electromagnetic imaging with an atomic magnetometer

Cameron Deans, Luca Marmugi, and Ferruccio Renzoni
Opt. Express 25(15) 17911-17917 (2017)

Magnetoencephalography with a chip-scale atomic magnetometer

T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe
Biomed. Opt. Express 3(5) 981-990 (2012)

Magnetic induction tomography using an all-optical 87Rb atomic magnetometer

Arne Wickenbrock, Sarunas Jurgilas, Albert Dow, Luca Marmugi, and Ferruccio Renzoni
Opt. Lett. 39(22) 6367-6370 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
    [Crossref]
  2. B. Lord, “Remote sensing techniques for onshore oil and gas exploration,” Lead Edge 36, 24–32 (2017).
    [Crossref]
  3. R. Lasaponara and N. Masini, Satellite Remote Sensing: A New Tool for Archaeology (Springer, 2014), Vol. 16.
  4. M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proc. IEEE 97, 1031–1055 (2009).
    [Crossref]
  5. A. Oracevic, S. Akbaş, S. Ozdemir, and M. Kos, “Secure target detection and tracking in mission critical wireless sensor networks,” in International Conference on Anti-Counterfeiting, Security and Identification (ASID) (2014), pp. 1–5.
  6. G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVS),” Photogramm. Eng. Remote Sens. 81, 281–330 (2015).
    [Crossref]
  7. V. Gerginov, F. C. S. da Silva, and D. Howe, “Prospects for magnetic field communications and location using quantum sensors,” Rev. Sci. Instrum. 88, 125005 (2017).
    [Crossref]
  8. R. Schettini and S. Corchs, “Underwater image processing: State of the art of restoration and image enhancement methods,” EURASIP J. Applied Signal Processing 2010, 746052 (2010).
    [Crossref]
  9. H. Bucker, “Matched-field tracking in shallow water,” J. Acoust. Soc. Am. 96, 3809–3811 (1994).
    [Crossref]
  10. D. A. Abraham and P. K. Willett, “Active sonar detection in shallow water using the page test,” IEEE J. Ocean. Eng. 27, 35–46 (2002).
    [Crossref]
  11. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [Crossref]
  12. H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Technol. 12, 1126–1131 (2001).
    [Crossref]
  13. P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
    [Crossref]
  14. R. Wyllie, M. Kauer, R. T. Wakai, and T. G. Walker, “Optical magnetometer array for fetal magnetocardiography,” Opt. Lett. 37, 2247–2249 (2012).
    [Crossref]
  15. R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
    [Crossref]
  16. L. Marmugi, L. Gori, S. Hussain, C. Deans, and F. Renzoni, “Remote detection of rotating machinery with a portable atomic magnetometer,” Appl. Opt. 56, 743–749 (2017).
    [Crossref]
  17. C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
    [Crossref]
  18. C. Deans, L. Marmugi, and F. Renzoni, “Through-barrier electromagnetic imaging with an atomic magnetometer,” Opt. Express 25, 17911–17917 (2017).
    [Crossref]
  19. I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
    [Crossref]
  20. M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
    [Crossref]
  21. W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
    [Crossref]
  22. A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
    [Crossref]
  23. L. Marmugi and F. Renzoni, “Optical magnetic induction tomography of the heart,” Sci. Rep. 6, 23962 (2016).
    [Crossref]
  24. I. Savukov, S. Seltzer, and M. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214–220 (2007).
    [Crossref]
  25. S. D. Pawar, P. Murugavel, and D. M. Lal, “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian ocean,” J. Geophys. Res. 114, D02205 (2009).
  26. C. Deans, L. Marmugi, and F. Renzoni, “Video demonstration of active detection with an array of atomic magnetometers,” https://doi.org/10.6084/m9.figshare.5674795 (2017). [Online; 12-November-2017].
  27. At 20 kHz, δAl=0.58  mm, which is much smaller than the thickness of both targets. Consequently, the relevant parameter for eddy current in this case is only the surface enclosing the magnetic flux changes. This corresponds, for each of the two targets, to their areas.
  28. W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
    [Crossref]
  29. G. Benelli and A. Pozzebon, “RFID under water: Technical issues and applications,” in Radio Frequency Identification from System to Applications, M. B. I. Reaz, ed. (InTech, 2013), Chap. 18.
  30. C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
    [Crossref]
  31. J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
    [Crossref]
  32. H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
    [Crossref]

2018 (1)

C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
[Crossref]

2017 (4)

L. Marmugi, L. Gori, S. Hussain, C. Deans, and F. Renzoni, “Remote detection of rotating machinery with a portable atomic magnetometer,” Appl. Opt. 56, 743–749 (2017).
[Crossref]

C. Deans, L. Marmugi, and F. Renzoni, “Through-barrier electromagnetic imaging with an atomic magnetometer,” Opt. Express 25, 17911–17917 (2017).
[Crossref]

B. Lord, “Remote sensing techniques for onshore oil and gas exploration,” Lead Edge 36, 24–32 (2017).
[Crossref]

V. Gerginov, F. C. S. da Silva, and D. Howe, “Prospects for magnetic field communications and location using quantum sensors,” Rev. Sci. Instrum. 88, 125005 (2017).
[Crossref]

2016 (4)

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

L. Marmugi and F. Renzoni, “Optical magnetic induction tomography of the heart,” Sci. Rep. 6, 23962 (2016).
[Crossref]

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
[Crossref]

2015 (1)

G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVS),” Photogramm. Eng. Remote Sens. 81, 281–330 (2015).
[Crossref]

2012 (3)

M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
[Crossref]

R. Wyllie, M. Kauer, R. T. Wakai, and T. G. Walker, “Optical magnetometer array for fetal magnetocardiography,” Opt. Lett. 37, 2247–2249 (2012).
[Crossref]

W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
[Crossref]

2011 (1)

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

2010 (1)

R. Schettini and S. Corchs, “Underwater image processing: State of the art of restoration and image enhancement methods,” EURASIP J. Applied Signal Processing 2010, 746052 (2010).
[Crossref]

2009 (3)

M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proc. IEEE 97, 1031–1055 (2009).
[Crossref]

S. D. Pawar, P. Murugavel, and D. M. Lal, “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian ocean,” J. Geophys. Res. 114, D02205 (2009).

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

2007 (4)

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

I. Savukov, S. Seltzer, and M. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214–220 (2007).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

2005 (1)

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref]

2002 (1)

D. A. Abraham and P. K. Willett, “Active sonar detection in shallow water using the page test,” IEEE J. Ocean. Eng. 27, 35–46 (2002).
[Crossref]

2001 (1)

H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Technol. 12, 1126–1131 (2001).
[Crossref]

1998 (1)

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

1994 (1)

H. Bucker, “Matched-field tracking in shallow water,” J. Acoust. Soc. Am. 96, 3809–3811 (1994).
[Crossref]

Abraham, D. A.

D. A. Abraham and P. K. Willett, “Active sonar detection in shallow water using the page test,” IEEE J. Ocean. Eng. 27, 35–46 (2002).
[Crossref]

Acosta, V. M.

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

Akbas, S.

A. Oracevic, S. Akbaş, S. Ozdemir, and M. Kos, “Secure target detection and tracking in mission critical wireless sensor networks,” in International Conference on Anti-Counterfeiting, Security and Identification (ASID) (2014), pp. 1–5.

Balana, A.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Benelli, G.

G. Benelli and A. Pozzebon, “RFID under water: Technical issues and applications,” in Radio Frequency Identification from System to Applications, M. B. I. Reaz, ed. (InTech, 2013), Chap. 18.

Bison, G.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Blanchard, J. W.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

Bucker, H.

H. Bucker, “Matched-field tracking in shallow water,” J. Acoust. Soc. Am. 96, 3809–3811 (1994).
[Crossref]

Budker, D.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Castagna, N.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Chalupczak, W.

W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
[Crossref]

Chan, C. T.

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Chen, H.

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

Cooper, R. J.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Corchs, S.

R. Schettini and S. Corchs, “Underwater image processing: State of the art of restoration and image enhancement methods,” EURASIP J. Applied Signal Processing 2010, 746052 (2010).
[Crossref]

da Silva, F. C. S.

V. Gerginov, F. C. S. da Silva, and D. Howe, “Prospects for magnetic field communications and location using quantum sensors,” Rev. Sci. Instrum. 88, 125005 (2017).
[Crossref]

Damiano, N. W.

M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
[Crossref]

Deans, C.

C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
[Crossref]

L. Marmugi, L. Gori, S. Hussain, C. Deans, and F. Renzoni, “Remote detection of rotating machinery with a portable atomic magnetometer,” Appl. Opt. 56, 743–749 (2017).
[Crossref]

C. Deans, L. Marmugi, and F. Renzoni, “Through-barrier electromagnetic imaging with an atomic magnetometer,” Opt. Express 25, 17911–17917 (2017).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
[Crossref]

Delbos, G.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Dural, N.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Eismann, M. T.

M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proc. IEEE 97, 1031–1055 (2009).
[Crossref]

Ellison, W.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Eymard, L.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Ferrara, P.

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

Fitzpatrick, B. K.

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

Foley, E. L.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Gawlik, W.

W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
[Crossref]

Gerginov, V.

V. Gerginov, F. C. S. da Silva, and D. Howe, “Prospects for magnetic field communications and location using quantum sensors,” Rev. Sci. Instrum. 88, 125005 (2017).
[Crossref]

Godun, R. M.

W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
[Crossref]

Golda, E. M.

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

Gori, L.

Griffin, L. D.

C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
[Crossref]

Griffiths, H.

H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Technol. 12, 1126–1131 (2001).
[Crossref]

Guillou, C.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Hofer, A.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Homce, G. T.

M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
[Crossref]

Howe, D.

V. Gerginov, F. C. S. da Silva, and D. Howe, “Prospects for magnetic field communications and location using quantum sensors,” Rev. Sci. Instrum. 88, 125005 (2017).
[Crossref]

Hussain, S.

L. Marmugi, L. Gori, S. Hussain, C. Deans, and F. Renzoni, “Remote detection of rotating machinery with a portable atomic magnetometer,” Appl. Opt. 56, 743–749 (2017).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
[Crossref]

Kauer, M.

Kephart, J. T.

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

Knowles, P.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Kornack, T. W.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Kos, M.

A. Oracevic, S. Akbaş, S. Ozdemir, and M. Kos, “Secure target detection and tracking in mission critical wireless sensor networks,” in International Conference on Anti-Counterfeiting, Security and Identification (ASID) (2014), pp. 1–5.

Lal, D. M.

S. D. Pawar, P. Murugavel, and D. M. Lal, “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian ocean,” J. Geophys. Res. 114, D02205 (2009).

Lamkaouchi, K.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Lasaponara, R.

R. Lasaponara and N. Masini, Satellite Remote Sensing: A New Tool for Archaeology (Springer, 2014), Vol. 16.

Ledbetter, M. P.

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

Leefer, N.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

Lord, B.

B. Lord, “Remote sensing techniques for onshore oil and gas exploration,” Lead Edge 36, 24–32 (2017).
[Crossref]

Marmugi, L.

C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
[Crossref]

C. Deans, L. Marmugi, and F. Renzoni, “Through-barrier electromagnetic imaging with an atomic magnetometer,” Opt. Express 25, 17911–17917 (2017).
[Crossref]

L. Marmugi, L. Gori, S. Hussain, C. Deans, and F. Renzoni, “Remote detection of rotating machinery with a portable atomic magnetometer,” Appl. Opt. 56, 743–749 (2017).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
[Crossref]

L. Marmugi and F. Renzoni, “Optical magnetic induction tomography of the heart,” Sci. Rep. 6, 23962 (2016).
[Crossref]

Masini, N.

R. Lasaponara and N. Masini, Satellite Remote Sensing: A New Tool for Archaeology (Springer, 2014), Vol. 16.

Matz, P.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Monti, M.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Mtchedlishvili, A.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Murugavel, P.

S. D. Pawar, P. Murugavel, and D. M. Lal, “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian ocean,” J. Geophys. Res. 114, D02205 (2009).

Nasrabadi, N. M.

M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proc. IEEE 97, 1031–1055 (2009).
[Crossref]

Okamitsu, J.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Oracevic, A.

A. Oracevic, S. Akbaş, S. Ozdemir, and M. Kos, “Secure target detection and tracking in mission critical wireless sensor networks,” in International Conference on Anti-Counterfeiting, Security and Identification (ASID) (2014), pp. 1–5.

Ozdemir, S.

A. Oracevic, S. Akbaş, S. Ozdemir, and M. Kos, “Secure target detection and tracking in mission critical wireless sensor networks,” in International Conference on Anti-Counterfeiting, Security and Identification (ASID) (2014), pp. 1–5.

Pajares, G.

G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVS),” Photogramm. Eng. Remote Sens. 81, 281–330 (2015).
[Crossref]

Pawar, S. D.

S. D. Pawar, P. Murugavel, and D. M. Lal, “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian ocean,” J. Geophys. Res. 114, D02205 (2009).

Pazgalev, A.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Pienkos, J.

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

Pozzebon, A.

G. Benelli and A. Pozzebon, “RFID under water: Technical issues and applications,” in Radio Frequency Identification from System to Applications, M. B. I. Reaz, ed. (InTech, 2013), Chap. 18.

Prescott, D. W.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Prigent, C.

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Pustelny, S.

W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
[Crossref]

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

Pyryt, M.

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

Renzoni, F.

C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
[Crossref]

C. Deans, L. Marmugi, and F. Renzoni, “Through-barrier electromagnetic imaging with an atomic magnetometer,” Opt. Express 25, 17911–17917 (2017).
[Crossref]

L. Marmugi, L. Gori, S. Hussain, C. Deans, and F. Renzoni, “Remote detection of rotating machinery with a portable atomic magnetometer,” Appl. Opt. 56, 743–749 (2017).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
[Crossref]

L. Marmugi and F. Renzoni, “Optical magnetic induction tomography of the heart,” Sci. Rep. 6, 23962 (2016).
[Crossref]

Rochester, S. M.

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

Romalis, M.

I. Savukov, S. Seltzer, and M. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214–220 (2007).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Romalis, M. V.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref]

Sauer, K. L.

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref]

Savukov, I.

I. Savukov, S. Seltzer, and M. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214–220 (2007).
[Crossref]

Savukov, I. M.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref]

Schettini, R.

R. Schettini and S. Corchs, “Underwater image processing: State of the art of restoration and image enhancement methods,” EURASIP J. Applied Signal Processing 2010, 746052 (2010).
[Crossref]

Seltzer, S.

I. Savukov, S. Seltzer, and M. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214–220 (2007).
[Crossref]

Seltzer, S. J.

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref]

Srednicki, J. R.

M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
[Crossref]

Stocker, A. D.

M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proc. IEEE 97, 1031–1055 (2009).
[Crossref]

Wakai, R. T.

Walker, T. G.

Weis, A.

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Wickenbrock, A.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

Willett, P. K.

D. A. Abraham and P. K. Willett, “Active sonar detection in shallow water using the page test,” IEEE J. Ocean. Eng. 27, 35–46 (2002).
[Crossref]

Wyllie, R.

Yashchuk, V. V.

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

Yenchek, M. R.

M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108, 103503 (2016).
[Crossref]

W. Chalupczak, R. M. Godun, S. Pustelny, and W. Gawlik, “Room temperature femtotesla radio-frequency atomic magnetometer,” Appl. Phys. Lett. 100, 242401 (2012).
[Crossref]

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

H. Chen and C. T. Chan, “Acoustic cloaking in three dimensions using acoustic metamaterials,” Appl. Phys. Lett. 91, 183518 (2007).
[Crossref]

EURASIP J. Applied Signal Processing (1)

R. Schettini and S. Corchs, “Underwater image processing: State of the art of restoration and image enhancement methods,” EURASIP J. Applied Signal Processing 2010, 746052 (2010).
[Crossref]

IEEE J. Ocean. Eng. (1)

D. A. Abraham and P. K. Willett, “Active sonar detection in shallow water using the page test,” IEEE J. Ocean. Eng. 27, 35–46 (2002).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

J. T. Kephart, B. K. Fitzpatrick, P. Ferrara, M. Pyryt, J. Pienkos, and E. M. Golda, “High temperature superconducting degaussing from feasibility study to fleet adoption,” IEEE Trans. Appl. Supercond. 21, 2229–2232 (2011).
[Crossref]

IEEE Trans. Ind. Appl. (1)

M. R. Yenchek, G. T. Homce, N. W. Damiano, and J. R. Srednicki, “NIOSH-sponsored research in through-the-earth communications for mines: Astatus report,” IEEE Trans. Ind. Appl. 48, 1700–1707 (2012).
[Crossref]

J. Acoust. Soc. Am. (1)

H. Bucker, “Matched-field tracking in shallow water,” J. Acoust. Soc. Am. 96, 3809–3811 (1994).
[Crossref]

J. Geophys. Res. (1)

S. D. Pawar, P. Murugavel, and D. M. Lal, “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian ocean,” J. Geophys. Res. 114, D02205 (2009).

J. Magn. Reson. (1)

I. Savukov, S. Seltzer, and M. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Magn. Reson. 185, 214–220 (2007).
[Crossref]

Lead Edge (1)

B. Lord, “Remote sensing techniques for onshore oil and gas exploration,” Lead Edge 36, 24–32 (2017).
[Crossref]

Meas. Sci. Technol. (1)

H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Technol. 12, 1126–1131 (2001).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Nucl. Instrum. Methods Phys. Res. Sect. A (1)

P. Knowles, G. Bison, N. Castagna, A. Hofer, A. Mtchedlishvili, A. Pazgalev, and A. Weis, “Laser-driven Cs magnetometer arrays for magnetic field measurement and control,” Nucl. Instrum. Methods Phys. Res. Sect. A 611, 306–309 (2009). Particle Physics with Slow Neutrons.
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photogramm. Eng. Remote Sens. (1)

G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVS),” Photogramm. Eng. Remote Sens. 81, 281–330 (2015).
[Crossref]

Phys. Rev. A (1)

M. P. Ledbetter, V. M. Acosta, S. M. Rochester, D. Budker, S. Pustelny, and V. V. Yashchuk, “Detection of radio-frequency magnetic fields using nonlinear magneto-optical rotation,” Phys. Rev. A 75, 023405 (2007).
[Crossref]

Phys. Rev. Appl. (1)

R. J. Cooper, D. W. Prescott, P. Matz, K. L. Sauer, N. Dural, M. V. Romalis, E. L. Foley, T. W. Kornack, M. Monti, and J. Okamitsu, “Atomic magnetometer multisensor array for rf interference mitigation and unshielded detection of nuclear quadrupole resonance,” Phys. Rev. Appl. 6, 064014 (2016).
[Crossref]

Phys. Rev. Lett. (2)

I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields,” Phys. Rev. Lett. 95, 063004 (2005).
[Crossref]

C. Deans, L. D. Griffin, L. Marmugi, and F. Renzoni, “Machine learning based localization and classification with atomic magnetometers,” Phys. Rev. Lett. 120, 033204 (2018).
[Crossref]

Proc. IEEE (1)

M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Automated hyperspectral cueing for civilian search and rescue,” Proc. IEEE 97, 1031–1055 (2009).
[Crossref]

Radio Sci. (1)

W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent, “New permittivity measurements of seawater,” Radio Sci. 33, 639–648 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

V. Gerginov, F. C. S. da Silva, and D. Howe, “Prospects for magnetic field communications and location using quantum sensors,” Rev. Sci. Instrum. 88, 125005 (2017).
[Crossref]

Sci. Rep. (1)

L. Marmugi and F. Renzoni, “Optical magnetic induction tomography of the heart,” Sci. Rep. 6, 23962 (2016).
[Crossref]

Other (5)

C. Deans, L. Marmugi, and F. Renzoni, “Video demonstration of active detection with an array of atomic magnetometers,” https://doi.org/10.6084/m9.figshare.5674795 (2017). [Online; 12-November-2017].

At 20 kHz, δAl=0.58  mm, which is much smaller than the thickness of both targets. Consequently, the relevant parameter for eddy current in this case is only the surface enclosing the magnetic flux changes. This corresponds, for each of the two targets, to their areas.

G. Benelli and A. Pozzebon, “RFID under water: Technical issues and applications,” in Radio Frequency Identification from System to Applications, M. B. I. Reaz, ed. (InTech, 2013), Chap. 18.

A. Oracevic, S. Akbaş, S. Ozdemir, and M. Kos, “Secure target detection and tracking in mission critical wireless sensor networks,” in International Conference on Anti-Counterfeiting, Security and Identification (ASID) (2014), pp. 1–5.

R. Lasaponara and N. Masini, Satellite Remote Sensing: A New Tool for Archaeology (Springer, 2014), Vol. 16.

Supplementary Material (1)

NameDescription
» Visualization 1       Demonstration of active detection with an array of atomic magnetometers.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Simplified sketch of the 2 × 2 RF AMs array for detection and localization. DBR: distributed Bragg reflector laser. DAVLL, dichroic atomic vapor laser lock; AOM, acousto-optic modulator; DAQ, data acquisition board; AMP, current amplifier; WF, waveform generator; REF IN, reference input; r n and ϕ n are the amplitude and phase signals, respectively, of the n th sensor Sn.
Fig. 2.
Fig. 2. Arrangement for detection and localization. (a) The coordinate grid, parallel to the sensor plane. Each square is 77.5    mm × 77.5    mm . (b) Arrangement of the sensors, RF coil, target, and saline water when applicable.
Fig. 3.
Fig. 3. Response of the n th sensor (Sn ( i n , j n )): Δ r produced by an Al plate ( 105    mm × 110    mm × 10    mm ) in air 90 mm above the sensor plane, detected at 20 kHz. The plate is placed in each of the 9 grid positions and the corresponding Δ r is independently recorded with each sensor. Different responses may be observed due to the independent optimization of each sensor in the array.
Fig. 4.
Fig. 4. Target localization: simultaneously recorded Δ r , when an Al plate ( 105    mm × 110    mm × 10    mm ), in air 90 mm above the sensor plane, is placed in different positions. Operation frequency: 20 kHz.
Fig. 5.
Fig. 5. Target localization: simultaneously recorded Δ r , when an Al target ( 44    mm × 50    mm × 13    mm ) in air, 90 mm above the sensor plane, is placed in different positions. Operation frequency: 20 kHz.
Fig. 6.
Fig. 6. Underwater target detection and localization: simultaneously recorded Δ r , when an Al plate ( 105    mm × 110    mm × 10    mm ) is placed in different positions, at 30 mm underwater (120 mm from the array plane). Operation frequency: 10 kHz.
Fig. 7.
Fig. 7. Underwater target detection: Δ r of S2 as a function of the depth of the target, a thin Al plate ( 105    mm × 73    mm × 3    mm ), detected at 10 kHz, placed in position (2,3), above the sensor. The dashed horizontal line marks the “zero-level” compatible with no possible detection, corresponding to 100 mm underwater (190 mm distance from the sensor plane).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ( ν ) = 1 2 π ν μ ϵ 2 ( 1 + ( σ 2 π ϵ ν ) 2 1 ) .

Metrics