Abstract

A multiband infrared diagnostic (MBID) method for methane emission monitoring in limited underground environments was presented considering the strong optical background of gas/solid attenuation. Based on spatial distribution of aerosols and complex refractive index of dust particles, forward calculations were carried out with/without methane to obtain the spectral transmittance through the participating atmosphere in a mine roadway. Considering the concurrent attenuation and absorption behavior of dust and gases, four infrared wavebands were selected to retrieve the methane concentration combined with a stochastic particle swarm optimization (SPSO) algorithm. Inversion results prove that the presented MBID method is robust and effective in identifying methane at concentrations of 0.1% or even lower with inversed relative error within 10%. Further analyses illustrate that the four selected wavebands are indispensable, and the MBID method is still valid with transmission signal disturbance in a conventional dust-polluted atmosphere under mechanized mining condition. However, the effective detection distance should be limited within 50 m to ensure inversed relative error less than 5% at 1% methane concentration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveband selection within 400–4000  cm-1 of optical identification of airborne dust in coal mine tunneling face

Wenzheng Wang, Yanming Wang, and Guoqing Shi
Appl. Opt. 55(11) 2951-2959 (2016)

Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine

Wenzheng Wang, Yanming Wang, and Guoqing Shi
Appl. Opt. 54(35) 10532-10540 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Ajrash, J. Zanganeh, and B. Moghtaderi, “Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane,” J. Loss Prev. Process Ind. 40, 207–216 (2016).
    [Crossref]
  2. J. Kurnia, A. Sasmito, and A. Mujumdar, “CFD simulation of methane dispersion and innovative methane management in underground mining faces,” Appl. Math. Model. 38, 3467–3484 (2014).
    [Crossref]
  3. H. Chen, H. Qi, and Q. Feng, “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980–2010,” J. Loss Prev. Process Ind. 26, 38–44 (2013).
    [Crossref]
  4. Q. Zhang and Q. Ma, “Dynamic pressure induced by a methane-air explosion in a coal mine,” Proc. Saf. Environ. Prot. 93, 233–239 (2015).
    [Crossref]
  5. W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).
    [Crossref]
  6. S. Jiang, Z. Wu, and H. Shao, Safety Monitoring and Control (China University of Mining and Technology, 2013).
  7. F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
    [Crossref]
  8. H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.
  9. W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Waveband selection within 400–4000 cm−1 of optical identification of airborne dust in coal mine tunneling face,” Appl. Opt. 55, 2951–2959 (2016).
    [Crossref]
  10. S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
    [Crossref]
  11. B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
    [Crossref]
  12. Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
    [Crossref]
  13. H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
    [Crossref]
  14. W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine,” Appl. Opt. 54, 10532–10540 (2015).
    [Crossref]
  15. X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
    [Crossref]
  16. L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
    [Crossref]
  17. https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/ft-ir-research-spectrometers/vertex-series/vertex-8080v/overview.html .
  18. http://aacc.cumt.edu.cn/model/TwoGradePage/NewsEquipment.aspx?id=46287&openid=154&tab=two .
  19. H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
    [Crossref]
  20. C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
    [Crossref]
  21. W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Forward research on transmission characteristics of near-surface particulate-matter-polluted atmosphere in mining area combined with CFD method,” Opt. Express 23, A1010–A1023 (2015).
    [Crossref]
  22. H. Wei, X. Chen, R. Rao, Y. Wang, and P. Yang, “A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation,” Opt. Express 15, 8360–8370 (2007).
    [Crossref]
  23. Y. Zhang, H. L. Yi, and H. P. Tan, “Lattice Boltzmann method for one-dimensional vector radiative transfer,” Opt. Express 24, 2027–2046 (2016).
    [Crossref]
  24. Y. Sun, J. Ma, and B. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
    [Crossref]
  25. F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
    [Crossref]
  26. M. Kim, J. Cho, and S. Baek, “Radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and particles using the modified discrete-ordinates method,” J. Quant. Spectrosc. Radiat. Transfer 109, 1607–1621 (2008).
    [Crossref]
  27. Z. H. Ruan, Y. Yuan, and X. X. Zhang, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
    [Crossref]
  28. X. H. Chang and Y. M. Wang, “Coal fire depth-profile reconstruction from ground penetrating radar data,” Inf. Int. Interdiscip. J. 15, 4647–4652 (2012).
  29. Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
    [Crossref]
  30. Y. M. Wang, W. Z. Wang, Z. L. Shao, D. M. Wang, and G. Q. Shi, “Innovative prediction model of carbon monoxide emission from deep mined coal oxidation,” Bulg. Chem. Commun. 46, 887–895 (2014).
  31. K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).
  32. M. Krasnyansky, “Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor,” J. Loss Prev. Process Ind. 19, 729–735 (2006).
    [Crossref]

2016 (5)

M. Ajrash, J. Zanganeh, and B. Moghtaderi, “Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane,” J. Loss Prev. Process Ind. 40, 207–216 (2016).
[Crossref]

Z. H. Ruan, Y. Yuan, and X. X. Zhang, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
[Crossref]

Y. Zhang, H. L. Yi, and H. P. Tan, “Lattice Boltzmann method for one-dimensional vector radiative transfer,” Opt. Express 24, 2027–2046 (2016).
[Crossref]

W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Waveband selection within 400–4000 cm−1 of optical identification of airborne dust in coal mine tunneling face,” Appl. Opt. 55, 2951–2959 (2016).
[Crossref]

2015 (7)

W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Forward research on transmission characteristics of near-surface particulate-matter-polluted atmosphere in mining area combined with CFD method,” Opt. Express 23, A1010–A1023 (2015).
[Crossref]

W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine,” Appl. Opt. 54, 10532–10540 (2015).
[Crossref]

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Y. Sun, J. Ma, and B. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

Q. Zhang and Q. Ma, “Dynamic pressure induced by a methane-air explosion in a coal mine,” Proc. Saf. Environ. Prot. 93, 233–239 (2015).
[Crossref]

W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).
[Crossref]

2014 (3)

J. Kurnia, A. Sasmito, and A. Mujumdar, “CFD simulation of methane dispersion and innovative methane management in underground mining faces,” Appl. Math. Model. 38, 3467–3484 (2014).
[Crossref]

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Y. M. Wang, W. Z. Wang, Z. L. Shao, D. M. Wang, and G. Q. Shi, “Innovative prediction model of carbon monoxide emission from deep mined coal oxidation,” Bulg. Chem. Commun. 46, 887–895 (2014).

2013 (3)

F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
[Crossref]

H. Chen, H. Qi, and Q. Feng, “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980–2010,” J. Loss Prev. Process Ind. 26, 38–44 (2013).
[Crossref]

L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
[Crossref]

2012 (2)

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

X. H. Chang and Y. M. Wang, “Coal fire depth-profile reconstruction from ground penetrating radar data,” Inf. Int. Interdiscip. J. 15, 4647–4652 (2012).

2011 (1)

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

2010 (1)

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

2009 (1)

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

2008 (2)

M. Kim, J. Cho, and S. Baek, “Radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and particles using the modified discrete-ordinates method,” J. Quant. Spectrosc. Radiat. Transfer 109, 1607–1621 (2008).
[Crossref]

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

2007 (2)

Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
[Crossref]

H. Wei, X. Chen, R. Rao, Y. Wang, and P. Yang, “A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation,” Opt. Express 15, 8360–8370 (2007).
[Crossref]

2006 (1)

M. Krasnyansky, “Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor,” J. Loss Prev. Process Ind. 19, 729–735 (2006).
[Crossref]

Ajrash, M.

M. Ajrash, J. Zanganeh, and B. Moghtaderi, “Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane,” J. Loss Prev. Process Ind. 40, 207–216 (2016).
[Crossref]

Baek, S.

M. Kim, J. Cho, and S. Baek, “Radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and particles using the modified discrete-ordinates method,” J. Quant. Spectrosc. Radiat. Transfer 109, 1607–1621 (2008).
[Crossref]

Bai, C.

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Chang, X. H.

X. H. Chang and Y. M. Wang, “Coal fire depth-profile reconstruction from ground penetrating radar data,” Inf. Int. Interdiscip. J. 15, 4647–4652 (2012).

Chen, H.

H. Chen, H. Qi, and Q. Feng, “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980–2010,” J. Loss Prev. Process Ind. 26, 38–44 (2013).
[Crossref]

Chen, H. W.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Chen, X.

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

H. Wei, X. Chen, R. Rao, Y. Wang, and P. Yang, “A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation,” Opt. Express 15, 8360–8370 (2007).
[Crossref]

Chen, Y.

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Cho, J.

M. Kim, J. Cho, and S. Baek, “Radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and particles using the modified discrete-ordinates method,” J. Quant. Spectrosc. Radiat. Transfer 109, 1607–1621 (2008).
[Crossref]

Deü, J.

L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
[Crossref]

Feng, Q.

H. Chen, H. Qi, and Q. Feng, “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980–2010,” J. Loss Prev. Process Ind. 26, 38–44 (2013).
[Crossref]

Gao, K.

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

Ge, Z.

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Gong, G.

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Guo, L.

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Huang, K. F.

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

Huang, X.

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

Jiang, S.

S. Jiang, Z. Wu, and H. Shao, Safety Monitoring and Control (China University of Mining and Technology, 2013).

Jin, H.

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Kang, Y.

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

Kim, M.

M. Kim, J. Cho, and S. Baek, “Radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and particles using the modified discrete-ordinates method,” J. Quant. Spectrosc. Radiat. Transfer 109, 1607–1621 (2008).
[Crossref]

Krasnyansky, M.

M. Krasnyansky, “Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor,” J. Loss Prev. Process Ind. 19, 729–735 (2006).
[Crossref]

Kurnia, J.

J. Kurnia, A. Sasmito, and A. Mujumdar, “CFD simulation of methane dispersion and innovative methane management in underground mining faces,” Appl. Math. Model. 38, 3467–3484 (2014).
[Crossref]

Le Lay, F.

L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
[Crossref]

Legay, A.

L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
[Crossref]

Li, B.

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

Y. Sun, J. Ma, and B. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

Li, E.

H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.

Li, Z.

Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
[Crossref]

Liang, Z.

H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.

Lin, H.

H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.

Liu, F.

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Liu, J.

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

Liu, L.

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Liu, L. H.

C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
[Crossref]

Liu, Q.

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Liu, S.

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Liu, Z. G.

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

Lu, G.

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Lu, Z.

Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
[Crossref]

Ma, J.

Y. Sun, J. Ma, and B. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

Ma, L. X.

C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
[Crossref]

Ma, Q.

Q. Zhang and Q. Ma, “Dynamic pressure induced by a methane-air explosion in a coal mine,” Proc. Saf. Environ. Prot. 93, 233–239 (2015).
[Crossref]

Moghtaderi, B.

M. Ajrash, J. Zanganeh, and B. Moghtaderi, “Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane,” J. Loss Prev. Process Ind. 40, 207–216 (2016).
[Crossref]

Mujumdar, A.

J. Kurnia, A. Sasmito, and A. Mujumdar, “CFD simulation of methane dispersion and innovative methane management in underground mining faces,” Appl. Math. Model. 38, 3467–3484 (2014).
[Crossref]

Qi, H.

H. Chen, H. Qi, and Q. Feng, “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980–2010,” J. Loss Prev. Process Ind. 26, 38–44 (2013).
[Crossref]

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Rao, R.

Ren, C.

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Rouleau, L.

L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
[Crossref]

Ruan, Z. H.

Z. H. Ruan, Y. Yuan, and X. X. Zhang, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Sasmito, A.

J. Kurnia, A. Sasmito, and A. Mujumdar, “CFD simulation of methane dispersion and innovative methane management in underground mining faces,” Appl. Math. Model. 38, 3467–3484 (2014).
[Crossref]

Shao, H.

S. Jiang, Z. Wu, and H. Shao, Safety Monitoring and Control (China University of Mining and Technology, 2013).

Shao, Z. L.

Y. M. Wang, W. Z. Wang, Z. L. Shao, D. M. Wang, and G. Q. Shi, “Innovative prediction model of carbon monoxide emission from deep mined coal oxidation,” Bulg. Chem. Commun. 46, 887–895 (2014).

Shi, G. Q.

Shuai, Y.

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

Su, S.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Sun, J.

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Sun, Y.

Y. Sun, J. Ma, and B. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

Tan, H.

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Tan, H. P.

Y. Zhang, H. L. Yi, and H. P. Tan, “Lattice Boltzmann method for one-dimensional vector radiative transfer,” Opt. Express 24, 2027–2046 (2016).
[Crossref]

F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

Tan, J.

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Tan, J. Y.

C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
[Crossref]

Teakle, P.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Wang, C. A.

C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
[Crossref]

Wang, D. M.

W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).
[Crossref]

Y. M. Wang, W. Z. Wang, Z. L. Shao, D. M. Wang, and G. Q. Shi, “Innovative prediction model of carbon monoxide emission from deep mined coal oxidation,” Bulg. Chem. Commun. 46, 887–895 (2014).

Wang, F. Q.

F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

Wang, W. Z.

Wang, Y.

Wang, Y. M.

W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Waveband selection within 400–4000 cm−1 of optical identification of airborne dust in coal mine tunneling face,” Appl. Opt. 55, 2951–2959 (2016).
[Crossref]

W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Forward research on transmission characteristics of near-surface particulate-matter-polluted atmosphere in mining area combined with CFD method,” Opt. Express 23, A1010–A1023 (2015).
[Crossref]

W. Z. Wang, Y. M. Wang, and G. Q. Shi, “Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine,” Appl. Opt. 54, 10532–10540 (2015).
[Crossref]

W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).
[Crossref]

Y. M. Wang, W. Z. Wang, Z. L. Shao, D. M. Wang, and G. Q. Shi, “Innovative prediction model of carbon monoxide emission from deep mined coal oxidation,” Bulg. Chem. Commun. 46, 887–895 (2014).

X. H. Chang and Y. M. Wang, “Coal fire depth-profile reconstruction from ground penetrating radar data,” Inf. Int. Interdiscip. J. 15, 4647–4652 (2012).

Wei, H.

Wu, Q.

Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
[Crossref]

Wu, Z.

S. Jiang, Z. Wu, and H. Shao, Safety Monitoring and Control (China University of Mining and Technology, 2013).

Xiu, G.

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Xu, J.

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Xue, S.

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

Yang, M.

H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.

Yang, P.

Yi, H.

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Yi, H. L.

Y. Zhang, H. L. Yi, and H. P. Tan, “Lattice Boltzmann method for one-dimensional vector radiative transfer,” Opt. Express 24, 2027–2046 (2016).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

Yu, C. L.

F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
[Crossref]

Yu, Y.

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Yuan, Y.

Z. H. Ruan, Y. Yuan, and X. X. Zhang, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

Zanganeh, J.

M. Ajrash, J. Zanganeh, and B. Moghtaderi, “Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane,” J. Loss Prev. Process Ind. 40, 207–216 (2016).
[Crossref]

Zhai, B.

H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.

Zhang, A.

Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
[Crossref]

Zhang, B.

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Zhang, Q.

Q. Zhang and Q. Ma, “Dynamic pressure induced by a methane-air explosion in a coal mine,” Proc. Saf. Environ. Prot. 93, 233–239 (2015).
[Crossref]

Zhang, T.

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

Zhang, X. X.

Z. H. Ruan, Y. Yuan, and X. X. Zhang, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, H. L. Yi, and H. P. Tan, “Lattice Boltzmann method for one-dimensional vector radiative transfer,” Opt. Express 24, 2027–2046 (2016).
[Crossref]

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Zhao, J.

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Appl. Math. Model. (1)

J. Kurnia, A. Sasmito, and A. Mujumdar, “CFD simulation of methane dispersion and innovative methane management in underground mining faces,” Appl. Math. Model. 38, 3467–3484 (2014).
[Crossref]

Appl. Opt. (2)

Bulg. Chem. Commun. (1)

Y. M. Wang, W. Z. Wang, Z. L. Shao, D. M. Wang, and G. Q. Shi, “Innovative prediction model of carbon monoxide emission from deep mined coal oxidation,” Bulg. Chem. Commun. 46, 887–895 (2014).

Chinese Sci. Bull. (1)

H. Tan, L. Liu, H. Yi, J. Zhao, H. Qi, and J. Tan, “Recent progress in computational thermal radiative transfer,” Chinese Sci. Bull. 54, 4135–4147 (2009).
[Crossref]

Energy Convers. Manage. (1)

X. Huang, X. Chen, Y. Shuai, Y. Yuan, T. Zhang, B. Li, and H. Tan, “Heat transfer analysis of solar-thermal dissociation of NiFe2O4 by coupling MCRTM and FVM method,” Energy Convers. Manage. 106, 676–686 (2015).
[Crossref]

Inf. Int. Interdiscip. J. (1)

X. H. Chang and Y. M. Wang, “Coal fire depth-profile reconstruction from ground penetrating radar data,” Inf. Int. Interdiscip. J. 15, 4647–4652 (2012).

Int. J. Heat Mass Transfer (2)

F. Q. Wang, Y. Shuai, H. P. Tan, and C. L. Yu, “Thermal performance analysis of porous media receiver with concentrated solar irradiation,” Int. J. Heat Mass Transfer 62, 247–254 (2013).
[Crossref]

C. A. Wang, L. X. Ma, J. Y. Tan, and L. H. Liu, “Study of radiative transfer in 1D densely packed bed layer containing absorbing-scattering spherical particles,” Int. J. Heat Mass Transfer 102, 669–678 (2016).
[Crossref]

Int. J. Hydrogen Energy (1)

H. Jin, Y. Chen, Z. Ge, S. Liu, C. Ren, and L. Guo, “Hydrogen production by Zhundong coal gasification in supercritical water,” Int. J. Hydrogen Energy 40, 16096–16103 (2015).
[Crossref]

Int. J. Therm. Sci. (1)

Y. Sun, J. Ma, and B. Li, “Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity,” Int. J. Therm. Sci. 90, 187–196 (2015).
[Crossref]

J. Chin. Univ. Mining Technol. (1)

Z. Li, Z. Lu, Q. Wu, and A. Zhang, “Numerical simulation study of goaf methane drainage and spontaneous combustion coupling,” J. Chin. Univ. Mining Technol. 17, 0503–0507 (2007).
[Crossref]

J. Environ. Manage. (1)

S. Su, H. W. Chen, P. Teakle, and S. Xue, “Characteristics of coalmine ventilation air flows,” J. Environ. Manage. 86, 44–62 (2008).
[Crossref]

J. Loss Prev. Process Ind. (3)

H. Chen, H. Qi, and Q. Feng, “Characteristics of direct causes and human factors in major gas explosion accidents in Chinese coal mines: case study spanning the years 1980–2010,” J. Loss Prev. Process Ind. 26, 38–44 (2013).
[Crossref]

M. Ajrash, J. Zanganeh, and B. Moghtaderi, “Effects of ignition energy on fire and explosion characteristics of dilute hybrid fuel in ventilation air methane,” J. Loss Prev. Process Ind. 40, 207–216 (2016).
[Crossref]

M. Krasnyansky, “Prevention and suppression of explosions in gas-air and dust-air mixtures using powder aerosol-inhibitor,” J. Loss Prev. Process Ind. 19, 729–735 (2006).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Kim, J. Cho, and S. Baek, “Radiative heat transfer between two concentric spheres separated by a two-phase mixture of non-gray gas and particles using the modified discrete-ordinates method,” J. Quant. Spectrosc. Radiat. Transfer 109, 1607–1621 (2008).
[Crossref]

Y. Yuan, H. L. Yi, Y. Shuai, F. Q. Wang, and H. P. Tan, “Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization,” J. Quant. Spectrosc. Radiat. Transfer 111, 2106–2114 (2010).
[Crossref]

Math. Probl. Eng. (1)

W. Z. Wang, Y. M. Wang, G. Q. Shi, and D. M. Wang, “Numerical study on infrared optical property of diffuse coal particles in mine fully mechanized working combined with CFD method,” Math. Probl. Eng. 2015, 501401 (2015).
[Crossref]

Mech. Mater. (1)

L. Rouleau, J. Deü, A. Legay, and F. Le Lay, “Application of Kramers–Kronig relations to time-temperature superposition for viscoelastic materials,” Mech. Mater. 65, 66–75 (2013).
[Crossref]

Opt. Express (3)

Proc. Saf. Environ. Prot. (1)

Q. Zhang and Q. Ma, “Dynamic pressure induced by a methane-air explosion in a coal mine,” Proc. Saf. Environ. Prot. 93, 233–239 (2015).
[Crossref]

Process Saf. Prog. (1)

B. Zhang, C. Bai, G. Xiu, Q. Liu, and G. Gong, “Explosion and flame characteristics of methane/air mixtures in a large-scale vessel,” Process Saf. Prog. 33, 362–368 (2014).
[Crossref]

Safe. Coal Mines (1)

K. Gao, Z. G. Liu, J. Liu, Y. Kang, and K. F. Huang, “Numerical simulation of the influence of working face air leakage on gob gas flow laws,” Safe. Coal Mines 43, 8–11 (2012).

Sens. Actuatator B (1)

F. Liu, Y. Zhang, Y. Yu, J. Xu, J. Sun, and G. Lu, “Enhanced sensing performance of catalytic combustion methane sensor by using Pd nanorod/γ-Al2O3,” Sens. Actuatator B 160, 1091–1097 (2011).
[Crossref]

Sol. Energy (1)

Z. H. Ruan, Y. Yuan, and X. X. Zhang, “Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization,” Sol. Energy 127, 147–158 (2016).
[Crossref]

Other (4)

H. Lin, Z. Liang, E. Li, M. Yang, and B. Zhai, “Analysis and design of an improved light interference methane sensor,” in Proceedings of IEEE International Conference on Control and Automation (ICCA) (IEEE, 2014), pp. 504–509.

S. Jiang, Z. Wu, and H. Shao, Safety Monitoring and Control (China University of Mining and Technology, 2013).

https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/ft-ir-research-spectrometers/vertex-series/vertex-8080v/overview.html .

http://aacc.cumt.edu.cn/model/TwoGradePage/NewsEquipment.aspx?id=46287&openid=154&tab=two .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the underground mining area and sampling points.
Fig. 2.
Fig. 2. SEM image of coal dust particles: (a)  scale = 20    μm and (b)  scale = 50    μm .
Fig. 3.
Fig. 3. Spectral transmittance of coal dust particles from FT-IR test.
Fig. 4.
Fig. 4. Complex refractive index of coal particles.
Fig. 5.
Fig. 5. Spectral transmittance of confined atmosphere with/without methane gas.
Fig. 6.
Fig. 6. Selection of spectral bands for inverse calculation.
Fig. 7.
Fig. 7. Convergence process of the inversed calculation.
Fig. 8.
Fig. 8. Coal dust concentration distribution in forward calculation and its area integral.
Fig. 9.
Fig. 9. Variation range of inversed gas concentration.
Fig. 10.
Fig. 10. Relative error of inversed result with different spectral band combination.
Fig. 11.
Fig. 11. Influence of (a) dust concentration and (b) detection distance on inversed result.

Tables (6)

Tables Icon

Table 1. Spatial Distribution of Coal Dust

Tables Icon

Table 2. Conventional Gas Composition in Underground Atmosphere

Tables Icon

Table 3. Inversed Result of Methane Concentration and Coal Dust Parameters

Tables Icon

Table 4. Comparison of Accuracy between MBID Method and Catalytic Combustion Method

Tables Icon

Table 5. Four Types of Combination of Spectral Bands

Tables Icon

Table 6. Inverse Calculation Performance When Different Transmission Signal Errors Added

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ( c , ρ , α , β ) = 1 N i = 1 N ( τ τ ¯ τ ) 2 ,
δ = | c c ¯ | c × 100 ,

Metrics