Abstract

Transient radiative transfer induced by a short-pulsed laser in a one-dimensional graded-index medium is investigated by the discontinuous finite element method (DFEM). The boundaries of the medium are Fresnel reflectors, and the incident pulse is considered as the combination of the collimated and the diffuse parts after its first interaction with the medium. The correctness and accuracy of the DFEM solutions for time-resolved reflectance and transmittance are first validated by comparisons with the results obtained by the Monte Carlo method, and the DFEM is then employed to investigate the transient radiative transfer in a graded-index medium with Fresnel boundaries. Effects of the refractive index distributions, the pulse width, the optical thickness, and the scattering phase functions on the transient radiative signals are examined. Several meaningful trends on the time-resolved reflectance and transmittance are observed and analyzed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transient polarized radiative transfer analysis in a scattering medium by a discontinuous finite element method

Cun-Hai Wang, Hong-Liang Yi, and He-Ping Tan
Opt. Express 25(7) 7418-7442 (2017)

One-dimensional transient radiative transfer by lattice Boltzmann method

Yong Zhang, Hongliang Yi, and Heping Tan
Opt. Express 21(21) 24532-24549 (2013)

Transient/time-dependent radiative transfer in a two-dimensional scattering medium considering the polarization effect

Cun-Hai Wang, Yan-Yan Feng, Yong Zhang, Hong-Liang Yi, and He-Ping Tan
Opt. Express 25(13) 14621-14634 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription