Abstract

This paper presents a temporal phase-unwrapping method for fringe projection profilometry. With it, a sequence of phase-shifting fringe patterns is projected onto the measured object for getting the wrapped phase map and achieving a high measurement resolution, and an additional sequence corresponding to Chebyshev polynomials is used for determining their fringe orders. For effectuating this method, we deduce an algorithm by use of the recursive property of Chebyshev polynomials. This algorithm, combined with a correction operation in the least-squares sense, allows us to accurately estimate the fringe orders in the presence of noise. Experimental results demonstrate the proposed method to be effective in restoring the absolute phase maps of fringe patterns.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry

Fuxing Lü, Shuo Xing, and Hongwei Guo
Appl. Opt. 56(25) 7204-7216 (2017)

Dual-sensitivity profilometry with defocused projection of binary fringes

G. Garnica, M. Padilla, and M. Servin
Appl. Opt. 56(28) 7985-7989 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription