Abstract

Three-dimensional multi-elemental mapping of composite wear-resistant coatings by laser-induced breakdown spectroscopy has been demonstrated for the first time, to the best of our knowledge. Individual clads of 1560 nickel alloy reinforced with tungsten carbide were synthesized by a co-axial laser cladding technique. Electron energy dispersive x-ray spectroscopy revealed elemental maps for major elements (W, Ni, Co, Cr, Fe) but failed to measure silicon and carbon. Laser-induced breakdown spectroscopy was utilized for elemental mapping of carbon and all other elements of interest. It was demonstrated that three-dimensional elemental profiling for a few tens of micrometers requires substantial laser spot overlapping during the scanning procedure in order to achieve good accuracy of depth measurements. Elemental maps for nickel, iron, chromium, silicon, tungsten, and carbon were quantified for 900  μm×900  μm×45  μm volume with 30 μm lateral and 4 μm depth resolution in the case of tungsten carbide particles in nickel alloy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrochemical microanalysis of aluminum alloys by laser-induced breakdown spectroscopy: identification of precipitates

Igor V. Cravetchi, Mike Taschuk, Georg W. Rieger, Ying Y. Tsui, and Robert Fedosejevs
Appl. Opt. 42(30) 6138-6147 (2003)

Laser-induced breakdown spectroscopy of molten aluminum alloy

Awadhesh K. Rai, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 42(12) 2078-2084 (2003)

Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence

Jiaming Li, Zhongqi Hao, Nan Zhao, Ran Zhou, Rongxing Yi, Shisong Tang, Lianbo Guo, Xiangyou Li, Xiaoyan Zeng, and Yongfeng Lu
Opt. Express 25(5) 4945-4951 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Pinkerton, “[INVITED] Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
    [Crossref]
  2. E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
    [Crossref]
  3. A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
    [Crossref]
  4. J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
    [Crossref]
  5. V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
    [Crossref]
  6. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
    [Crossref]
  7. M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: state of the art,” Spectrochim. Acta B 81, 1–10 (2013).
    [Crossref]
  8. K. Sugiyama, T. Fujii, T. Matsumura, Y. Shiogama, M. Yamaguchi, and K. Nemoto, “Detection of chlorine with concentration of 0.18  kg/m3 in concrete by laser-induced breakdown spectroscopy,” Appl. Opt. 49, C181–C190 (2010).
    [Crossref]
  9. P. Lucena and J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta B 56, 177–185 (2001).
    [Crossref]
  10. P. Lucena, J. M. Vadillo, and J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 17, 548–551 (2002).
    [Crossref]
  11. I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
    [Crossref]
  12. I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
    [Crossref]
  13. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
    [Crossref]
  14. H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
    [Crossref]
  15. F. Boué-Bigne, “Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization,” Spectrochim. Acta B 63, 1122–1129 (2008).
    [Crossref]
  16. I. V. Cravetchi, M. Taschuk, G. W. Rieger, Y. Y. Tsui, and R. Fedosejevs, “Spectrochemical microanalysis of aluminum alloys by laser-induced breakdown spectroscopy: identification of precipitates,” Appl. Opt. 42, 6138–6147 (2003).
    [Crossref]
  17. D. Menut, P. Fichet, J.-L. Lacour, A. Rivoallan, and P. Mauchien, “Micro-laser-induced breakdown spectroscopy technique: a powerful method for performing quantitative surface mapping on conductive and nonconductive samples,” Appl. Opt. 42, 6063–6071 (2003).
    [Crossref]
  18. S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
    [Crossref]
  19. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
    [Crossref]
  20. Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
    [Crossref]
  21. V. Zorba, X. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B 66, 189–192 (2011).
    [Crossref]
  22. G. Nicolas, M. P. Mateo, and V. Pinon, “3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22, 1244–1249 (2007).
    [Crossref]
  23. H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
    [Crossref]
  24. J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
    [Crossref]
  25. A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
    [Crossref]
  26. V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
    [Crossref]
  27. V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
    [Crossref]
  28. T. A. Labutin, S. M. Zaytsev, A. M. Popov, and N. B. Zorov, “Carbon determination in carbon-manganese steels under atmospheric conditions by laser-induced breakdown spectroscopy,” Opt. Express 22, 22382–22387 (2014).
    [Crossref]
  29. A. Kramida, Y. Ralchenko, J. Reader, , and NIST ASD Team, “NIST Atomic Spectra Database (version 5.5.1), [Online],” 2017, available: https://physics.nist.gov/asd .
  30. V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48, 357–383 (2013).
    [Crossref]
  31. S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
    [Crossref]
  32. S. M. Pershin, R. H. Tabares, and R. A. Nunes, “Correction of the spectral lines of a laser plasma for measurement of the depth profile of layered materials in an ablation crater,” Quantum Electron. 29, 862–864 (1999).
    [Crossref]
  33. I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
    [Crossref]

2017 (1)

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

2016 (3)

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

A. J. Pinkerton, “[INVITED] Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]

2015 (4)

A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
[Crossref]

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

2014 (2)

T. A. Labutin, S. M. Zaytsev, A. M. Popov, and N. B. Zorov, “Carbon determination in carbon-manganese steels under atmospheric conditions by laser-induced breakdown spectroscopy,” Opt. Express 22, 22382–22387 (2014).
[Crossref]

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

2013 (3)

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: state of the art,” Spectrochim. Acta B 81, 1–10 (2013).
[Crossref]

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48, 357–383 (2013).
[Crossref]

2012 (2)

I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
[Crossref]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012).
[Crossref]

2011 (2)

V. Zorba, X. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B 66, 189–192 (2011).
[Crossref]

E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
[Crossref]

2010 (2)

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[Crossref]

K. Sugiyama, T. Fujii, T. Matsumura, Y. Shiogama, M. Yamaguchi, and K. Nemoto, “Detection of chlorine with concentration of 0.18  kg/m3 in concrete by laser-induced breakdown spectroscopy,” Appl. Opt. 49, C181–C190 (2010).
[Crossref]

2008 (1)

F. Boué-Bigne, “Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization,” Spectrochim. Acta B 63, 1122–1129 (2008).
[Crossref]

2007 (1)

G. Nicolas, M. P. Mateo, and V. Pinon, “3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22, 1244–1249 (2007).
[Crossref]

2004 (2)

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
[Crossref]

2003 (3)

2002 (1)

P. Lucena, J. M. Vadillo, and J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 17, 548–551 (2002).
[Crossref]

2001 (2)

P. Lucena and J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta B 56, 177–185 (2001).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

2000 (1)

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

1999 (2)

I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[Crossref]

S. M. Pershin, R. H. Tabares, and R. A. Nunes, “Correction of the spectral lines of a laser plasma for measurement of the depth profile of layered materials in an ablation crater,” Quantum Electron. 29, 862–864 (1999).
[Crossref]

Amado, J. M. M.

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

Anzano, J. M.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

Arkhipov, V. E.

E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
[Crossref]

Assion, A.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Banerjee, S. P.

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

Baumert, T.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Bazaleeva, K. O.

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

Bette, H.

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Birger, E. M.

E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
[Crossref]

Boué-Bigne, F.

F. Boué-Bigne, “Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization,” Spectrochim. Acta B 63, 1122–1129 (2008).
[Crossref]

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Bunkin, A. F.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[Crossref]

Chen, G.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

Chen, Z.

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

Cheng, L.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

Chirinos, J. R.

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Cravetchi, I. V.

Doeff, M.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

Fedosejevs, R.

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

I. V. Cravetchi, M. Taschuk, G. W. Rieger, Y. Y. Tsui, and R. Fedosejevs, “Spectrochemical microanalysis of aluminum alloys by laser-induced breakdown spectroscopy: identification of precipitates,” Appl. Opt. 42, 6138–6147 (2003).
[Crossref]

Fichet, P.

Filichkina, V. A.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

Filippov, M. N.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

Fujii, T.

Gonzalez, J. J.

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Gornushkin, I. B.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[Crossref]

Grigoryants, A. G.

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
[Crossref]

Grishin, M. Y.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

Haag, L.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Hahn, D. W.

Hou, H.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Ionin, A. A.

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

Khater, M. A.

M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: state of the art,” Spectrochim. Acta B 81, 1–10 (2013).
[Crossref]

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Kudryashov, S. I.

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

Kutschera, U.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Labutin, T. A.

Lacour, J.-L.

Laserna, J. J.

P. Lucena, J. M. Vadillo, and J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 17, 548–551 (2002).
[Crossref]

P. Lucena and J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta B 56, 177–185 (2001).
[Crossref]

Lednev, V.

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[Crossref]

Lednev, V. N.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

Lopez-Quintas, I.

I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
[Crossref]

Lu, Y.

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

Lucena, P.

P. Lucena, J. M. Vadillo, and J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 17, 548–551 (2002).
[Crossref]

P. Lucena and J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta B 56, 177–185 (2001).
[Crossref]

Mao, S. S.

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
[Crossref]

Mao, X.

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B 66, 189–192 (2011).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
[Crossref]

Mateo, M. P.

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48, 357–383 (2013).
[Crossref]

I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
[Crossref]

G. Nicolas, M. P. Mateo, and V. Pinon, “3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22, 1244–1249 (2007).
[Crossref]

Mateo, M. P. P.

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

Matsumura, T.

Mauchien, P.

Mayorov, F.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Menut, D.

Misyurov, A. I.

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

Mönch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Morey, M.

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Moskvitin, G. V.

E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
[Crossref]

Nasajpour, H.

I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[Crossref]

Nemoto, K.

Nicolas, G.

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48, 357–383 (2013).
[Crossref]

I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
[Crossref]

G. Nicolas, M. P. Mateo, and V. Pinon, “3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22, 1244–1249 (2007).
[Crossref]

Noll, R.

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Nunes, R. A.

S. M. Pershin, R. H. Tabares, and R. A. Nunes, “Correction of the spectral lines of a laser plasma for measurement of the depth profile of layered materials in an ablation crater,” Quantum Electron. 29, 862–864 (1999).
[Crossref]

Omenetto, N.

Oropeza, D. D.

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Pershin, S. M.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[Crossref]

S. M. Pershin, R. H. Tabares, and R. A. Nunes, “Correction of the spectral lines of a laser plasma for measurement of the depth profile of layered materials in an ablation crater,” Quantum Electron. 29, 862–864 (1999).
[Crossref]

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Pinkerton, A. J.

A. J. Pinkerton, “[INVITED] Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]

Pinon, V.

I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
[Crossref]

G. Nicolas, M. P. Mateo, and V. Pinon, “3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22, 1244–1249 (2007).
[Crossref]

Piñon, V.

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48, 357–383 (2013).
[Crossref]

Polyakov, A. N.

E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
[Crossref]

Popov, A. M.

Richardson, T.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

Rieger, G. W.

Rivoallan, A.

Ruiz-Medina, A.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

Russo, R.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

Russo, R. E.

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B 66, 189–192 (2011).
[Crossref]

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
[Crossref]

Samokhvalov, A. A.

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

Sarpe-Tudoran, C.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Sdvizhenskii, P. A.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

Shiganov, I. N.

A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
[Crossref]

Shiogama, Y.

Smirnova, N. A.

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

Smith, B. W.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[Crossref]

Stavertiy, A. Y.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
[Crossref]

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Sugiyama, K.

Tabares, R. H.

S. M. Pershin, R. H. Tabares, and R. A. Nunes, “Correction of the spectral lines of a laser plasma for measurement of the depth profile of layered materials in an ablation crater,” Quantum Electron. 29, 862–864 (1999).
[Crossref]

Taschuk, M.

Tobar, M. J. J.

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

Tretyakov, R. S.

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
[Crossref]

Tsui, Y. Y.

Vadillo, J. M.

P. Lucena, J. M. Vadillo, and J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 17, 548–551 (2002).
[Crossref]

Varela, J. A.

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

Veiko, V. P.

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

Winefordner, J. D.

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[Crossref]

Winter, M.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Wollenhaupt, M.

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Yamaguchi, M.

Yañez, A.

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

Yudina, T. Y.

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

Zaytsev, S. M.

Zeng, X.

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
[Crossref]

Zheng, R.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

Zorba, V.

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B 66, 189–192 (2011).
[Crossref]

Zorov, N. B.

Anal. Chem. (1)

I. B. Gornushkin, B. W. Smith, H. Nasajpour, and J. D. Winefordner, “Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer,” Anal. Chem. 71, 5157–5164 (1999).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003).
[Crossref]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

V. Piñon, M. P. Mateo, and G. Nicolas, “Laser-induced breakdown spectroscopy for chemical mapping of materials,” Appl. Spectrosc. Rev. 48, 357–383 (2013).
[Crossref]

Appl. Surf. Sci. (3)

J. A. Varela, J. M. M. Amado, M. J. J. Tobar, M. P. P. Mateo, A. Yañez, and G. Nicolas, “Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique,” Appl. Surf. Sci. 336, 396–400 (2015).
[Crossref]

V. N. Lednev, P. A. Sdvizhenskii, M. N. Filippov, M. Y. Grishin, V. A. Filichkina, A. Y. Stavertiy, R. S. Tretyakov, A. F. Bunkin, and S. M. Pershin, “Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy,” Appl. Surf. Sci. 416, 302–307 (2017).
[Crossref]

I. Lopez-Quintas, V. Pinon, M. P. Mateo, and G. Nicolas, “Effect of surface topography in the generation of chemical maps by laser-induced plasma spectroscopy,” Appl. Surf. Sci. 258, 9432–9436 (2012).
[Crossref]

J. Anal. At. Spectrom. (8)

S. S. Mao, X. Zeng, X. Mao, and R. E. Russo, “Laser-induced breakdown spectroscopy: flat surface vs. cavity structures,” J. Anal. At. Spectrom. 19, 495–498 (2004).
[Crossref]

Y. Lu, V. Zorba, X. Mao, R. Zheng, and R. E. Russo, “UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” J. Anal. At. Spectrom. 28, 743–748 (2013).
[Crossref]

I. B. Gornushkin, A. Ruiz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopic laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586 (2000).
[Crossref]

P. Lucena, J. M. Vadillo, and J. J. Laserna, “Spatial distribution of catalytically active elements and deactivants in diesel-engine automobile converters by laser-induced plasma spectrometry,” J. Anal. At. Spectrom. 17, 548–551 (2002).
[Crossref]

G. Nicolas, M. P. Mateo, and V. Pinon, “3D chemical maps of non-flat surfaces by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 22, 1244–1249 (2007).
[Crossref]

H. Hou, L. Cheng, T. Richardson, G. Chen, M. Doeff, R. Zheng, R. Russo, and V. Zorba, “Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS),” J. Anal. At. Spectrom. 30, 2295–2302 (2015).
[Crossref]

J. R. Chirinos, D. D. Oropeza, J. J. Gonzalez, H. Hou, M. Morey, V. Zorba, and R. E. Russo, “Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS,” J. Anal. At. Spectrom. 29, 1292–1298 (2014).
[Crossref]

V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010).
[Crossref]

J. Phys. D (1)

H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

A. J. Pinkerton, “[INVITED] Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]

Opt. Lasers Eng. (1)

S. P. Banerjee, Z. Chen, and R. Fedosejevs, “High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy,” Opt. Lasers Eng. 68, 1–6 (2015).
[Crossref]

Quantum Electron. (1)

S. M. Pershin, R. H. Tabares, and R. A. Nunes, “Correction of the spectral lines of a laser plasma for measurement of the depth profile of layered materials in an ablation crater,” Quantum Electron. 29, 862–864 (1999).
[Crossref]

Spectrochim. Acta B (6)

M. A. Khater, “Laser-induced breakdown spectroscopy for light elements detection in steel: state of the art,” Spectrochim. Acta B 81, 1–10 (2013).
[Crossref]

V. N. Lednev, S. M. Pershin, A. F. Bunkin, A. A. Samokhvalov, V. P. Veiko, S. I. Kudryashov, and A. A. Ionin, “Double pulse laser induced breakdown spectroscopy with Gaussian and multimode beams,” Spectrochim. Acta B 124, 47–55 (2016).
[Crossref]

F. Boué-Bigne, “Laser-induced breakdown spectroscopy applications in the steel industry: rapid analysis of segregation and decarburization,” Spectrochim. Acta B 63, 1122–1129 (2008).
[Crossref]

V. Zorba, X. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta B 66, 189–192 (2011).
[Crossref]

P. Lucena and J. J. Laserna, “Three-dimensional distribution analysis of platinum, palladium and rhodium in auto catalytic converters using imaging-mode laser-induced breakdown spectrometry,” Spectrochim. Acta B 56, 177–185 (2001).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[Crossref]

Weld. Int. (3)

E. M. Birger, G. V. Moskvitin, A. N. Polyakov, and V. E. Arkhipov, “Industrial laser cladding: current state and future,” Weld. Int. 25, 234–243 (2011).
[Crossref]

A. G. Grigoryants, A. Y. Stavertiy, K. O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int. 31, 52–57 (2016).
[Crossref]

A. G. Grigoryants, R. S. Tretyakov, I. N. Shiganov, and A. Y. Stavertiy, “Optimization of the shape of nozzles for coaxial laser cladding,” Weld. Int. 29, 639–642 (2015).
[Crossref]

Other (1)

A. Kramida, Y. Ralchenko, J. Reader, , and NIST ASD Team, “NIST Atomic Spectra Database (version 5.5.1), [Online],” 2017, available: https://physics.nist.gov/asd .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. SEM image and EDX elemental maps for substrate (Fe), 1560 alloy (Ni, Cr, Si, and Fe) reinforced with tungsten carbide particles (W, C, Co).
Fig. 2.
Fig. 2. Detailed SEM image (a) of WC/Co particle in 1560 alloy matrix. EDX spectra for 1560 alloy (spot S3, b), and WC/Co particle (spot S6, c).
Fig. 3.
Fig. 3. Laser plasma spectra for matrix 1560 Ni-Cr-Fe-B-Si alloy (black color) and tungsten carbide particle (red color). Spectra were acquired with 1 μs gate and 0.1 μs delay. Atomic/ionic lines selected for LIBS mapping are marked underlined bold.
Fig. 4.
Fig. 4. Temporal dependence of atomic intensities (open circles) and full widths at half-maximum (open triangles) for nickel Ni I 197.69 (a) and carbon C I 193.09 (b) lines.
Fig. 5.
Fig. 5. Laser crater profiles with a step of 100 μm (a) and 40 μm (c) and corresponding crater track cross sections (b). The cross section for craters with 100 μm steps is shifted (b) by 4 μm for better view.
Fig. 6.
Fig. 6. Single laser clad elemental map for iron, nickel, chromium, silicon, cobalt, tungsten and carbon, as revealed by LIBS.
Fig. 7.
Fig. 7. Atomic nickel line (Ni I 361.95) intensity (black) and plasma temperature (violet) dependence (a) during deep crater formation. 3D crater profiles and corresponding cross sections are shown in (b) after ablation with 1, 5, 10, and 30 pulses.
Fig. 8.
Fig. 8. 1560 Ni-alloy 300×600  μm areas ablated with 1, 5, 10, and 30 scans (a) of single-shot sampling and corresponding cross section (b) for sampling scheme with 0% spot overlapping (50 μm step) (c). Crater depth as a function of ablating pulses number was fitted with linear function (d).
Fig. 9.
Fig. 9. Nickel atomic line Ni I 361.95 average intensity and standard deviation (a) for corresponding intensity maps (b) in the case of successive sampling with single-shot pulses and 0% laser spots overlapping.
Fig. 10.
Fig. 10. 1560-Ni alloy ablated areas (300×600  μm) with 1, 5, 10, and 30 scans (a) and corresponding cross section (b) for sampling scheme with 38% spot overlapping (30 μm step) (c). Ablation rate nonlinearly depended on pulse number; thus, depth as a function of ablating pulses was fitted by a quadratic function (d).
Fig. 11.
Fig. 11. Nickel atomic line Ni I 361.95 standard deviation (a) for corresponding maps (b) in the case of successive sampling with single-shot pulses and 38% laser spots overlapping.
Fig. 12.
Fig. 12. Layer-by-layer contour elemental maps for nickel (green), tungsten (red), and carbon (magenta). Violet circle indicates an example of tungsten carbide particle (100 μm in diameter) appearance during layer-by-layer LIBS mapping.

Tables (2)

Tables Icon

Table 1. Chemical Composition (wt. %) of the Steel Substrate and Powders Used for Laser Cladding

Tables Icon

Table 2. Atomic and Ionic Line Constants from the NIST Database [29]: Wavelength, Transition Probability, Degeneracy of Upper Level, Energy of Upper Level (Ek), and Energy of Lower Level (Ei)a

Metrics