Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating

Not Accessible

Your library or personal account may give you access

Abstract

Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimized retrieval method for atmospheric temperature profiling based on rotational Raman lidar

Qing Yan, Yufeng Wang, Tianle Gao, Fei Gao, Huige Di, Yuehui Song, and Dengxin Hua
Appl. Opt. 58(19) 5170-5178 (2019)

Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling

Zhaofei Wang, Jiandong Mao, Juan Li, Hu Zhao, Chunyan Zhou, and Hongjiang Sheng
Appl. Opt. 56(20) 5620-5629 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.